ɑ-Hydroxy-ω-Mercapto PEG

ɑ-Hydroxy-ω-Thiol PEG

Product information

This linear PEG derivative has a sulfhydryl group (-SH) on one chain end. The free thiol groups react readily with maleimido or iodacetamido functionalities or transition metal surfaces like gold, silver etc. Reaction with other free thiols leads to S-S disulfide bonds which can be cleaved by reducing agents. PEG thiols may also be conjugated by thiol-ene chemistry. The hydroxy group on one side of this PEG crosslinker is able to undergo esterification reactions with acids for reversible pegylation. It also enables further derivatization or replacement with other reactive functional groups.


Literature

L 101 α-Hydroxy-ω-Mercapto PEGs

  1. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-Mediated near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (23), 13549-13554. doi: 10.1073/pnas.2232479100
  2. Qian, X.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. In Vivo Tumor Targeting and Spectroscopic Detection with Surface-Enhanced Raman Nanoparticle Tags. Nat. Biotechnol. 2008, 26 (1), 83-90. doi: 10.1038/nbt1377
  3. O’Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-Thermal Tumor Ablation in Mice Using near Infrared-Absorbing Nanoparticles. Cancer Lett. 2004, 209 (2), 171-176. doi: 10.1016/s0304-3835(04)00144-2
  4. Cheng, Y.; C Samia, A.; Meyers, J. D.; Panagopoulos, I.; Fei, B.; Burda, C. Highly Efficient Drug Delivery with Gold Nanoparticle Vectors for in Vivo Photodynamic Therapy of Cancer. J. Am. Chem. Soc. 2008, 130 (32), 10643-10647. doi: 10.1021/ja801631c
  5. Zhang, G.; Yang, Z.; Lu, W.; Zhang, R.; Huang, Q.; Tian, M.; Li, L.; Liang, D.; Li, C. Influence of Anchoring Ligands and Particle Size on the Colloidal Stability and in Vivo Biodistribution of Polyethylene Glycol-Coated Gold Nanoparticles in Tumor-Xenografted Mice. Biomaterials 2009, 30 (10), 1928-1936. doi: 10.1016/j.biomaterials.2008.12.038
  6. Moon, J. J.; Suh, H.; Bershteyn, A.; Stephan, M. T.; Liu, H.; Huang, B.; Sohail, M.; Luo, S.; Um, S. H.; Khant, H.; Goodwin, J. T.; Ramos, J.; Chiu, W.; Irvine, D. J. Interbilayer-Crosslinked Multilamellar Vesicles as Synthetic Vaccines for Potent Humoral and Cellular Immune Responses. Nat. Mater. 2011, 10 (3), 243-251. doi: 10.1038/nmat2960
  7. Xing, H.; Bu, W.; Zhang, S.; Zheng, X.; Li, M.; Chen, F.; He, Q.; Zhou, L.; Peng, W.; Hua, Y.; Shi, J. Multifunctional Nanoprobes for Upconversion Fluorescence, MR and CT Trimodal Imaging. Biomaterials 2012, 33 (4), 1079-1089. doi: 10.1016/j.biomaterials.2011.10.039
  8. Liu, Y.; Shipton, M. K.; Ryan, J.; Kaufman, E. D.; Franzen, S.; Feldheim, D. L. Synthesis, Stability, and Cellular Internalization of Gold Nanoparticles Containing Mixed Peptide-Poly(Ethylene Glycol) Monolayers. Anal. Chem. 2007, 79 (6), 2221-2229. doi: 10.1021/ac061578f
  9. Ding, X.; Yang, C.; Lim, T. P.; Hsu, L. Y.; Engler, A. C.; Hedrick, J. L.; Yang, Y.-Y. Antibacterial and Antifouling Catheter Coatings Using Surface Grafted PEG-b-Cationic Polycarbonate Diblock Copolymers. Biomaterials 2012, 33 (28), 6593-6603. doi: 10.1016/j.biomaterials.2012.06.001
  10. Gao, J.; Huang, X.; Liu, H.; Zan, F.; Ren, J. Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging. Langmuir 2012, 28 (9), 4464-4471. doi: 10.1021/la204289k
  11. Kumar, S.; Harrison, N.; Richards-Kortum, R.; Sokolov, K. Plasmonic Nanosensors for Imaging Intracellular Biomarkers in Live Cells. Nano Lett. 2007, 7 (5), 1338-1343. doi: 10.1021/nl070365i