Literature

L 1 Review Articles

  1. Synthesis of Peptides and Peptidomimetics, Houben Weyl, Eds. M. Goodman, A. Felix, L. Moroder, C. Toniolo, Georg Thieme Verlag Stuttgart, New York, (2002) Volume 22.
  2. Fields, G. B.; Noble, R. L. Solid Phase Peptide Synthesis Utilizing 9-Fluorenylmethoxy-carbonyl Amino Acids. Int. J. Pept. Protein Res. 1990, 35 (3), 161-214. doi: 10.1111/j.1399-3011.1990.tb00939.x.
  3. Hudson, D. Matrix Assisted Synthetic Transformations: A Mosaic of Diverse Contributions. I. The Pattern Emerges. J. Comb. Chem. 1999, 1 (5), 333-360. doi: 10.1021/cc990022l.
  4. Hudson, D. Matrix Assisted Synthetic Transformations: A Mosaic of Diverse Contributions. II. The Pattern Is Completed. J. Comb. Chem. 1999, 1 (6), 403-457. doi: 10.1021/cc990046s.
  5. Lebl, M. Parallel Personal Comments on “Classical” Papers in Combinatorial Chemistry. J. Comb. Chem. 1999, 1 (1), 3-24. doi: 10.1021/cc9800327.
  6. Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Solid-Phase Organic Reactions: A Review of the Recent Literature. Tetrahedron 1996, 52 (13), 4527-4554. doi: 10.1016/0040-4020(96)00216-5.
  7. Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C. Solid-Phase Organic Reactions II: A Review of the Literature Nov 95-Nov 96. Tetrahedron 1997, 53 (16), 5643-5678. doi: 10.1016/s0040-4020(97)00279-2.
  8. Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C. Solid-Phase Organic Reactions III: A Review of the Literature Nov 96-Dec 97. Tetrahedron 1998, 54 (51), 15385-15443. doi: 10.1016/s0040-4020(98)00968-5.
  9. Brown, R. C. D. Recent Developments in Solid-Phase Organic Synthesis. J. Chem. Soc. Perkin Trans. 1 1998, 3293-3320. doi: 10.1039/A805801F.

L 2 Bead Homogeneity

  1. Rapp W. Recent Advances in Synthesis and Use of High Load Spacer-modified Supports in SPS in Innovations and Perspectives in Solid Phase Synthesis & Combinatorial Libraries, Collected Papers of the 7th International Symposium 2001, (R. Epton, Ed.), Mayflower Worldwide Limited, Kingswinford, England, (2002), 9-12
  2. Rapp W., Fritz H., Bayer E., Monosized 15 micron grafted microspheres for ultra high speed peptide synthesis in Peptides, Chemistry and Biology, Proceedings of the Twelfth American Peptide Symposium, (Smith J. A., Rivier J. E., Eds.), ESCOM: Leiden, (1995), 529.
  3. Eggenweiler M., et al. Comparative studies of mono- and polydisperse polystyrene and polystyrene-polyethyleneglycol graft copolymer beads in Peptides 1994, Proceedings of the 23rd European Peptide Symposium, (Maya H. L. S., Ed.), ESCOM, Leiden (1995), 275.

L 3 Macro Beads

  1. Rapp W., Macrobeads as Microreactors: New Solid-Phase Synthesis Methology in Combinatorial Chemistry, Synthesis and Application, (Wilson S. R., Czarnik A. W., Eds.), John Wiley & Sons, Inc., (1997), 65.
  2. Pursch M., Schlotterbeck G., Tseng L. H., Albert K., Rapp W., Monitoring the reaction progress in combinatorial chemistry: 1H MAS NMR investigations on single macro beads in the suspended state. Angew. Chem. Int. Ed. Engl.1996, 35, 2867-2869. doi: 10.1002/anie.199628671.
  3. Rapp W., Nicholson G., Maier M., Schlotterbeck G., Pursch M., Albert K. Miniaturization in Chemistry: Chemical Possibilities and Physicochemical Properties of Polymeric Microreactors, in Innovations and Perspectives in Solid Phase Synthesis, & Combinatorial Libraries, Proceedings of the 4th International Symposium 1993, (Epton R., Ed.), Mayflower Scientific Limited, Birmingham, (1996), 97-100

L 4 TentaGel® Overview

  1. Bayer E., Rapp W. New polymer supports for solid-liquid-phase peptide synthesis in Chemistry of Peptides and Proteins, (Voelter W., Bayer E., Ovchinnikov Y. A., Ivanov V.T., Eds.) Walter de Gruyter & Co., Berlin. New York, (1986), 3.
  2. Bayer E., Rapp W., Dtsch. Offen. DE 3,500,180, 10. Juli 1986, Anm. 4. Jan 1985, C.A. 106, 50859.
  3. Bayer, E. Towards the Chemical Synthesis of Proteins. Angew. Chem. Int. Ed. Engl. 1991, 30 (2), 113-129. doi: 10.1002/anie.199101133.
  4. Bayer E., Rapp W., Polystyrene-Immobilized PEG Chains in Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Application, (Harris M., Ed.) Plenum Press New York, (1992), 325.
  5. Bayer E., Rapp W., German Pat. DOS 3714258, 1988.
  6. Bayer, E.; Dengler, M.; Hemmasi, B. Peptide Synthesis on the New Polyoxyethylene-Polystyrene Graft Copolymer, Synthesis of Insulin B 21-30. Int. J. Pept. Protein Res. 1985, 25 (2), 178-186. doi: 10.1111/j.1399-3011.1985.tb02162.x.
  7. Bayer E., Hellstern H., Eckstein H., Synthesis of Immobilized Peptide Fragments on Polystyrene-Polyoxy-ethylene for Affinity Chromatography. Z. Naturforsch. 1987; 42c, 455-460. doi: 10.1515_znc-1987-0422
  8. Rapp W., Zhang L., Häbich R., Bayer E. Polystyrene-Polyoxyethylene graftcopolymers for high speed peptide synthesis in Peptides 1988, Proceedings of the 20th European Peptide Symposium (Jung G., Bayer E., Eds.), Walter de Gruyter, Berlin, (1989), 199.
  9. Zhang L., Rapp W., Bayer E. Scale-up continuous-flow peptide synthesis of a partial sequence of tyrosine kinase using tentacle polymers in Peptides 1992, Proceedings of the22nd European Peptide Symposium (Schneider C. H., Eberle A. N., Eds.), Escom Leiden, (1993), 432.
  10. Karnbrock, W.; Deeg, M.; Gerhardt, J.; Rapp, W. Solid Phase Synthesis of Hydantoins by Thermalcyclization and Screening of Reaction Conditions Using APOS 1200. Mol. Diver. 1998, 4, 165-171. doi: 10.1023/A:1009659303984

L 5 TentaGel® Kinetics

  1. Bayer, E.; Albert, K.; Willisch, H.; Rapp, W.; Hemmasi, B. Carbon-13 NMR Relaxation Times of a Tripeptide Methyl Ester and Its Polymer-Bound Analogs. Macromolecules 1990, 23 (7), 1937-1940. doi: 10.1021/ma00209a010.
  2. Rudinger J., Buetzer P. in Peptides 1974 (Wolman J., Ed.), Wiley, New York, (1975), 211.
  3. Bayer E., Rapp W. Polystyrene-Immobilized PEG Chains Dynamics and Applications in Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Application, (Harris M., Ed.) Plenum Press, New York, (1992), 325.
  4. Zhang L., Rapp W., Bayer E. Continuous flow peptide synthesis: Dependence of the kinetics upon the nature of polymeric support, method of activation and reaction conditions in Peptides 1990, Proceedings of the 21st European Peptide Symposium (Giralt E., Andreus D., Eds.) Escom Leiden, (1991), 196.
  5. Rapp W. Prevention of side reactions by high speed continuous flow peptide synthesis in Peptides 1992, Proceedings of the 22th European Peptide Symposium (Schneider C. H., Eberle A.N., Eds.) Escom Leiden, (1993), 243.
  6. Shemyakin, M. M.; Ovchinnikov, Y. A.; Kinyushkin, A. A.; Kozhevnikova, I. V. Synthesis of Peptides in Solution on a Polymeric Support I. Synthesis of Glycylglycyl-l-Leucylglycine. Tetrahedron Lett. 1965, 6 (27), 2323-2327. doi: 10.1016/s0040-4039(00)70379-0.
  7. Andreatta, R. H.; Rink, H. Zur Problematik der Peptidsynthese an Trägern: Beitrag eines neuen Verfahrens mit löslichen Trägern. Helv. Chim. Acta 1973, 56 (4), 1205-1218. doi: 10.1002/hlca.19730560405.

L 6 TentaGel® Compatibility Water / org. Solvents

  1. Rapp W., Zhang L., Bannwarth W., Bayer E. Biotinylation and phosphorylation of peptides using polyethyleneglycol grafted resins as solid supports in CFPS in Peptides 1992, Proceedings of the 22th European Peptide Symposium, Escom Leiden, (1993), 347.

L 7 TentaGel® and NMR spectroscopy

  1. Look, G. C.; Holmes, C. P.; Chinn, J. P.; Gallop, M. A. Methods for Combinatorial Organic Synthesis: The Use of Fast 13C NMR Analysis for Gel Phase Reaction Monitoring. J. Org. Chem. 1994, 59 (25), 7588-7590. doi: 10.1021/jo00104a010.
  2. Fitch, W. L.; Detre, G.; Holmes, C. P.; Shoolery, J. N.; Keifer, P. A. High-Resolution 1H NMR in Solid-Phase Organic Synthesis. J. Org. Chem. 1994, 59 (26), 7955-7956. doi: 10.1021/jo00105a006.
  3. Keifer, P. A. Influence of Resin Structure, Tether Length, and Solvent upon the High-Resolution 1H NMR Spectra of Solid-Phase-Synthesis Resins. J. Org. Chem. 1996, 61 (5), 1558-1559. doi: 10.1021/jo952001t.
  4. Pursch M., Schlotterbeck G., Tseng L. H., Albert K., Rapp W., Monitoring the reaction progress in combinatorial chemistry: 1H MAS NMR investigations on single macro beads in the suspended state. Angew. Chem. Int. Ed. Engl.1996, 35, 2867-2869. doi: 10.1002/anie.199628671.
  5. Rapp W., Nicholson G., Maier M., Schlotterbeck G., Pursch M., Albert K., Miniaturization in chemistry: Chemical possibilities and physiochemical properties of polymeric microwavesreactors in Innovations and Perspectives in Solid Phase Synthesis, & Combinatorial Libraries, Proceedings of the 4th International Symposium 1993, (Epton R., Ed.), Mayflower Scientific Limited, Birmingham, (1996), 97.

L 8 TentaGel® OH Resins

  1. Rapp W., Zhang L., Bayer E. Continuous Flow Peptide Synthesis on PSPOE-Graft-Copolymers, in Innovation & Perspectives in Solid Phase Synthesis, 1st International Symposium; Ed, R. E., Ed.; Birmingham, 1990, 205-210.
  2. Zhang L. et al. Continuous flow peptide synthesis: Dependence of the kinetics upon the nature of polymeric support, method of activation and reaction conditions in Peptides 1990, Proc. 21st European Peptide Symposium; (Giralt D., Andreu E., Ed.; Leiden, 1990, 196.
  3. Bayer, E. Towards the Chemical Synthesis of Proteins. Angew. Chem. Int. Ed. Engl. 1991, 30 (2), 113-129. doi: 10.1002/anie.199101133.
  4. Hiroshige, M.; Hauske, J. R.; Zhou, P. Formation of C-C Bond in Solid Phase Synthesis Using the Heck Reaction. Tetrahedron Lett. 1995, 36 (26), 4567-4570. doi: 10.1016/0040-4039(95)00855-7.
  5. Krchňák, V.; Flegelová, Z.; Weichsel, A. S.; Lebl, M. Polymer-Supported Mitsunobu Ether Formation and Its Use in Combinatorial Chemistry. Tetrahedron Lett. 1995, 36 (35), 6193-6196. doi: 10.1016/0040-4039(95)01247-f.
  6. Szardenings, A. K.; Burkoth, T. S.; Lu, H. H.; Tien, D. W.; Campbell, D. A. A Simple Procedure for the Solid Phase Synthesis of Diketopiperazine and Diketomorpholine Derivatives. Tetrahedron 1997, 53 (19), 6573-6593. doi: 10.1016/s0040-4020(97)00218-4.
  7. Pátek, M.; Drake, B.; Lebl, M. Solid-Phase Synthesis of “Small” Organic Molecules Based on Thiazolidine Scaffold. Tetrahedron Lett. 1995, 36 (13), 2227-2230. doi: 10.1016/0040-4039(95)00261-a.
  8. Fancelli, D.; Fagnola, M. C.; Severino, D.; Bedeschi, A. Solid Phase Synthesis of 2-Substituted Benzofurans via the Palladium-Catalysed Heteroannulation of Acetylenes. Tetrahedron Lett. 1997, 38 (13), 2311-2314. doi: 10.1016/s0040-4039(97)00301-8.

L 9 TentaGel® Br Resins

  1. Rapp W. et al., Continuous flow peptide synthesis on PSPOE-graft-copolymers in Innovation & Perspectives in Solid Phase Synthesis, 1st International Symposium; Ed, R. E., Ed.; SPCC UK Ltd, Birmingham, 1990, 205.
  2. Zhang L. et al., Continuous flow peptide synthesis: Dependence of the kinetics upon the nature of polymeric support, method of activation and reaction conditions in Peptides 1990, Proc. 21st European Peptide Symposium, (Giralt E. , Andreu D., Eds.), ESCOM, Leiden, 1990, 196.
  3. Bayer, E. Towards the Chemical Synthesis of Proteins. Angew. Chem. Int. Ed. Engl. 1991, 30 (2), 113-129. doi: 10.1002/anie.199101133.
  4. Tumelty, D.; Cao, K.; Holmes, C. P. Traceless Solid-Phase Synthesis of Substituted Benzimidazoles via a Base-Cleavable Linker. Org. Lett. 2001, 3 (1), 83-86. doi: 10.1021/ol006801o.

L 10 TentaGel® NH2 Resins

  1. Rapp W. et al., Continuous flow peptide synthesis on PSPOE-graft-copolymers in Innovation & Perspectives in Solid Phase Synthesis, 1st International Symposium; Ed, R. E., Ed.; SPCC UK Ltd, Birmingham, 1990, 205.
  2. Zhang L. et al., Continuous flow peptide synthesis: Dependence of the kinetics upon the nature of polymeric support, method of activation and reaction conditions in Peptides 1990, Proc. 21st European Peptide Symposium, (Giralt E., Andreu D., Eds.), ESCOM, Leiden, 1990, 196.
  3. Bayer, E. Towards the Chemical Synthesis of Proteins. Angew. Chem. Int. Ed. Engl. 1991, 30 (2), 113-129. doi: 10.1002/anie.199101133.
  4. Gowravaram, M. R.; Gallop, M. A. “Traceless” Solid-Phase Synthesis of Furans via 1,3-Dipolar Cycloaddition Reactions of Isomünchnones. Tetrahedron Lett. 1997, 38 (40), 6973-6976. doi: 10.1016/s0040-4039(97)01667-5.

L 11 TentaGel® COOH Resins

  1. Rapp, W.; et al. Continuous flow peptide synthesis on PSPOE-graft-copolymers in Innovation & Perspectives in Solid Phase Synthesis, 1st International Symposium; Ed, R. E., Ed.; SPCC UK Ltd, Birmingham, 1990, 205.
  2. Zhang L. et al., Continuous flow peptide synthesis: Dependence of the kinetics upon the nature of polymeric support, method of activation and reaction conditions in Peptides 1990, Proc. 21st European Peptide Symposium, (Giralt E., Andreu D., Eds.), ESCOM, Leiden, 1990, 196.
  3. Bayer, E. Towards the Chemical Synthesis of Proteins. Angew. Chem. Int. Ed. Engl. 1991, 30 (2), 113-129. doi: 10.1002/anie.199101133.
  4. Routledge, A.; Abell, C.; Balasubramanian, S. An Investigation into Solid-Phase Radical Chemistry - Synthesis of Furan Rings. Synlett 1997, 1 (01), 61-62. doi: 10.1055/s-1997-704.

L 12 Narrow Particle Size TentaGel® Resins

  1. Rapp W., Bayer E. Ultra High Speed Continuous Flow Synthesis for Preview Synthesis - Principles and Application in Up-Scaling in Innovations and Perspectives in Solid Phase Synthesis, Peptides, Polypeptides and Oligonucleotides; (Epton R., Ed.) Intercept Ltd., Ed.; Andover, 1992, 259-266.
  2. Rapp W., Fritz H., Bayer E. Monosized 15 micron grafted microspheres for ultra high speed peptide synthesis in Proceedings of the Twelfth American Peptide Symposium; (Smith, J. A., Rivier, J. E., Eds.); Escom, Leiden, 1992, 529-530.
  3. Bayer E., Goldammer C. Conformation dependent coupling and deprotection: diagnosis and cure in Proceedings of the Twelfth American Peptide Symposium; Smith, J. A., Rivier, J. E., Eds.; Escom, Leiden, 1992, 589.
  4. Rapp W., Bayer E. Uniform microspheres in peptide synthesis: Ultrashort cycles and synthesis documentation by on-line monitoring as an alternative to multiple peptide synthesis in Peptides 1992: Proceedings of the Twenty-Second European Peptide Symposium September 13-19, 1992, Interlaken, Switzerland; Schneider, C. H., Eberle, A. N., Eds.; Springer: Dordrecht, Netherlands, 1993, 25.
  5. Rapp W., Bayer E. Peptide screening and optimization by using monosized 25-µm tentacle microspheres in Peptide Chemistry 1992: Proceedings of the 2nd Japan Symposium on Peptide Chemistry; Yanaihara, N., Ed.; ESCOM Science: Dordrecht, Netherlands, 1993, 7.
  6. Rapp W., Bayer E. Prediction and prevention of peptide conformations during synthesis in Peptides. Chemistry, Structure and Biology, Proceedings of the 13th American Peptide Symposium, Hodges R. S. ** and Smith J. A., Eds., ESCOM Science Publishers B.V., Leiden, Netherlands, 1995, 40

L 13 Multifunctional Resins

  1. Bayer, E. Towards the Chemical Synthesis of Proteins. Angew. Chem. Int. Ed. Engl. 1991, 30 (2), 113-129. doi: 10.1002/anie.199101133.
  2. Rapp W., Maier M., Schlotterbeck G., Pursch M., Albert K., Bayer E. Miniaturization in Chemistry: Macrobeads of 600 µm Diameter as Microreactors for Chemical Screening, Peptide Libraries and Combinatorial Chemistry in Peptides: Chemistry, Structure and Biology, Proceedings of the 14th American Peptide Symposium; (Kaumaya, P. T. P., Hodges, R. S., Eds.); Intercept: Wimborne, UK, 1996, 313.
  3. Rapp W., Nicholson G., Maier M., Schlotterbeck G., Pursch M., Albert K. Miniaturization in Chemistry: Chemical Possibilities and Physicochemical Properties of Polymeric Microreactors in Innovation and Perspectives in Solid Phase Synthesis and Combinatorial Libraries: Proceedings of the 4th International Symposium on Solid Phase Synthesis; (Epton, R., Ed.); Intercept: Wimborne, UK, 1996, 97-100.

L 14 TentaGel® Trt-OH Resins

  1. Bayer, E. Towards the Chemical Synthesis of Proteins. Angew. Chem. Int. Ed. Engl. 1991, 30 (2), 113-129. doi: 10.1002/anie.199101133.
  2. Gayo, L. M.; Suto, M. J. Traceless Linker: Oxidative Activation and Displacement of a Sulfur-Based Linker. Tetrahedron Lett. 1997, 38 (2), 211-214. doi: 10.1016/s0040-4039(96)02256-3.
  3. Bayer E. et al. New polymer and strategy for the solid-phase synthesis of protected peptide fragments in Peptides. Chemistry, Structure and Biology, Proceedings of the 13th American Peptide Symposium, (Hodges R. S. Smith J. A., Eds.), ESCOM Science Publishers B.V., Leiden, Netherlands, 1994, 156
  4. Fréchet, J. M. J.; Haque, K. E. Use of Polymers as Protecting Groups in Organic Synthesis. II. Protection of Primary Alcohol Functional Groups. Tetrahedron Lett. 1975, 16 (35), 3055-3056. doi: 10.1016/s0040-4039(00)75071-4.
  5. Fyles, T. M.; Leznoff, C. C. The use of polymer supports in organic synthesis. V. The preparation of monoacetates of symmetrical diols. Can. J. Chem. 1976, 54 (6), 935-942. doi: 10.1139/v76-135.
  6. Vliet V. et al.Protected Peptide Intermediates Using a Trityl Linker on a Solid Support in Innovation and Perspectives in Solid Phase Synthesis and Related Technologies 1992: Peptides, Polypeptides and Oligonucleotides; (Epton, R., Ed.); Intercept: Wimborne, UK, 1992, 475.
  7. Vliet V. et al., Protected peptide intermediates using a trityllinker on a solid support in Peptides 1992, Proc. 22nd European Peptide Symposium, (C. H. Schneider, A. N. Eberle, Eds.), ESCOM, Leiden, 1993, 279.
  8. Grübler G. et al., Solid Phase Synthesis of a C-terminal Proline Peptide Using an Anchor System Suppressing Diketopiperazine Formation in Innovation & Perspectives in Solid Phase Synthesis, 3rd International Symposium, (Epton R., Ed.), Mayflower Worldwide Ltd., Birmingham, 1994, 517-520.
  9. Bollhagen, R.; Schmiedberger, M.; Barlos, K.; Grell, E. A New Reagent for the Cleavage of Fully Protected Peptides Synthesised on 2-Chlorotrityl Chloride Resin. J. Chem. Soc. Chem. Commun. 1994, No. 22, 2559. doi: 10.1039/c39940002559.
  10. Krchňák, V.; Weichsel, A. S. Polymer-Supported Synthesis of Diverse Perhydro-1,4-Diazepine-2,5-Diones. Tetrahedron Lett. 1997, 38 (42), 7299-7302. doi: 10.1016/s0040-4039(97)01772-3.

L 15 TentaGel® S Trt - AA Fmoc Resins

  1. Bayer E. et al., New Polymer and strategy for the solid-phase synthesis of protected peptide fragemts in Peptides. Chemistry, Structure and Biology, Proceedings of the 13th American Peptide Symposium, (Hodges R. S., Smith J. A., Eds.), ESCOM Science Publishers B.V., Leiden, Netherlands, 1995, 156
  2. Grübler G. et al., Solid phase Synthesis (SPPS) of a c-terminal proline peptide using an anchor system suppressing diketopiperazine (DKP) formation in Innovation & Perspectives in Solid Phase Synthesis, 3rd International Symposium, (Epton R., Ed.), Mayflower Worldwide Ltd., Birmingham, 1994, 517.

L 16 TentaGel® HMBA Resins

  1. Sheppard, R. C.; Williams, B. J. Acid-Labile Resin Linkage Agents for Use in Solid Phase Peptide Synthesis. Int. J. Pept. Protein Res. 1982, 20 (5), 451-454. doi: 10.1111/j.1399-3011.1982.tb03067.x.

L 17 HypoGel®

  1. Rapp W., Recent Advances in Synthesis and Use of High Load Spacer-modified Supports in SPS in Innovation and Perspectives in Solid Phase Synthesis & Combinatorial Libraries, Collected Papers of the 7th International Symposium 2001 (Epton, R., Ed.); Mayflower Wordwide: Kingswinford, England, 2002, 9.

L 18 Immunization Overview

  1. Modrow, S.; Höflacher, B.; Mertz, R.; Wolf, H. Carrier-Bound Synthetic Peptides. J. Immunol. Methods 1989, 118 (1), 1-7. doi: 10.1016/0022-1759(89)90045-8.
  2. Fischer, P. M.; Comis, A.; Howden, M. E. H. Direct Immunization with Synthetic Peptidyl-Polyamide Resin. J. Immunol. Methods 1989, 118 (1), 119-123. doi: 10.1016/0022-1759(89)90061-6.
  3. Flegel M., Pichova D., Minarik P., Sheppard R. C. Analogues of Gn-RH stimulating the enhanced production of antibodies. Synthesis and some biological effects of peptides containing adjuvant, lysine-branched, and solubilised polymer support components in Peptides 1990, Proceedings of the 21st European Peptide Symposium (Giralt E., Andreu D., Eds.), ESCOM, Leiden, 1991, 837.
  4. Kanda, P.; Kennedy, R. C.; Sparrow, J. T. Synthesis of Polyamide Supports for Use in Peptide Synthesis and as Peptide-Resin Conjugates for Antibody Production. Int. J. Pept. Protein Res. 1991, 38 (4), 385-391. doi: 10.1111/j.1399-3011.1991.tb01518.x.
  5. Kennedy, R. C.; Dreesman, G. R.; Chanh, T. C.; Boswell, R. N.; Allan, J. S.; Lee, T. H.; Essex, M.; Sparrow, J. T.; Ho, D. D.; Kanda, P. Use of a Resin-Bound Synthetic Peptide for Identifying a Neutralizing Antigenic Determinant Associated with the Human Immunodeficiency Virus Envelope. J. Biol. Chem. 1987, 262 (12), 5769-5774. doi: 10.1016/s0021-9258(18)45641-4.
  6. Zeppezauer, M.; Hoffmann, R.; Schönberger, A.; Rawer, S.; Rapp, W.; Bayer, E. Hydrophilic Polystyrene-Polyoxyethylene Graft Polymer Beads as Carrier of Antigenic Peptides for in Vivo and in Vitro Immunization Techniques: Applications to the Non-Catalytic Zinc Loop of HLADH Isozymes and to Histone Fragments. Z. Naturforsch. B J. Chem. Sci. 1993, 48 (12), 1801-1806. doi: 10.1515/znb-1993-1217.
  7. Rapp W., Zhang L., Beck-Sickinger A. G., Dares K., Wiesmüller K.-H., Jung G., Bayer E. Comparative study of antibody titers induced by a peptide epitope conjugated with protein, lipopeptide, polyoxyethylene and polyoxyethylene-polystyrene graft copolymer in Peptides 1990, Proceedings of the 21st European Peptide Symposium (Giralt E., Andreu D., Eds.) ESCOM, Leiden, 1991, 849.
  8. Butz S., Rawer S., Rapp W., Birsner U., Immunization and affinity purification of antibodies using resin-immobilized lysine-branched synthetic peptides, Pept. Res., 1994, 7 (1), 20-23.

L 19 PEG peptides and Pam peptides

  1. Rapp W., Zhang L., Beck-Sickinger A. G., Dares K., Wiesmüller K.-H., Jung G., Bayer E. Comparative study of antibody titers induced by a peptide epitope conjugated with protein, lipopeptide, polyoxyethylene and polyoxyethylene-polystyrene graft copolymer in Peptides 1990, Proceedings of the 21st European Peptide Symposium (Giralt E., Andreu D., Eds.), ESCOM, Leiden, 1991, 849.
  2. Butz S., Rawer S., Rapp W., Birsner U., Immunization and affinity purification of antibodies using resin-immobilized lysine-branched synthetic peptides, Pept. Res., 1994, 7 (1), 20-23.
  3. Rapp W., PEG Grafted Polystyrene Tentacle Polymers in Combinatorial Peptide and Nonpeptide Libraries: A Handbook; Jung, G., Ed.; Wiley-VCH Verlag: Weinheim, Germany, 1996, 425.
  4. Burkoth, T. S.; Benzinger, T. L. S.; Jones, D. N. M.; Hallenga, K.; Meredith, S. C.; Lynn, D. G. C-Terminal PEG Blocks the Irreversible Step in β-Amyloid(10-35) Fibrillogenesis. J. Am. Chem. Soc. 1998, 120 (30), 7655-7656. doi: 10.1021/ja980566b.

L 20 Pam3Cys, PEG Pam3Cys, PEG Pam3CysPep

  1. Wiesmüller, K. H.; Jung, G.; Hess, G. Novel Low-Molecular-Weight Synthetic Vaccine against Foot-and-Mouth Disease Containing a Potent B-Cell and Macrophage Activator. Vaccine 1989, 7 (1), 29-33. doi: 10.1016/0264-410x(89)90007-8.
  2. Kleine, B.; Rapp, W.; Wiesmüller, K.-H.; Edinger, M.; Beck, W.; Metzger, J.; Ataulakhanov, R.; Jung, G.; Bessler, W. G. Lipopeptide-Polyoxyethylene Conjugates as Mitogens and Adjuvants. Immunobiology 1994, 190 (1-2), 53-66. doi: 10.1016/s0171-2985(11)80283-4.
  3. Rapp W., Zhang L., Müller C.. Zühl F., Wiesmüller K.-H., Jung G., Bayer E., Polymer-Immunoconjugates Based on Lipopeptides by SPPS: A New Technical Approach, in Innovations and Perspectives in Solid Phase Synthesis, Peptides, Proteins and Nucleic Acids, Proceedings of the 3rd International Symposium 1993, (Epton R., Ed.), Mayflower Worldwide Limited, Birmingham, 1994, 197-200.

L 21 Biotinylation of peptides

  1. Rapp W., Zhang L., Bannwarth W., Bayer E. Biotinylation and phosphorylation of peptides using polyethyleneglycol grafted resins as solid supports in CFPS in Peptides 1992, Proceedings of the 22th European Peptide Symposium, Escom Leiden, (1993), 347.

L 22 Oligonucleotides

  1. Letsinger, R. L.; Finnan, J. L.; Heavner, G. A.; Lunsford, W. B. Nucleotide Chemistry. XX. Phosphite Coupling Procedure for Generating Internucleotide Links. J. Am. Chem. Soc. 1975, 97 (11), 3278-3279. doi: 10.1021/ja00844a090.
  2. Uhlmann, E.; Peyman, A. Antisense Oligonucleotides: A New Therapeutic Principle. Chem. Rev. 1990, 90 (4), 543-584. doi: 10.1021/cr00102a001.
  3. Engels, J. W.; Uhlmann, E. Gene Synthesis [New Synthetic Methods(77)]. Angew. Chem. Int. Ed. Engl. 1989, 28 (6), 716-734. doi: 10.1002/anie.198907161.

L 23 Oligonucleotide synthesis

  1. Letsinger, R. L.; Mahadevan, V. Oligonucleotide Synthesis on a Polymer Support1,2. J. Am. Chem. Soc. 1965, 87 (15), 3526-3527. doi: 10.1021/ja01093a058.
  2. Bayer E., Bleicher K., Maier M., Gaus H. J., Schmeer K., Bauer T., Synthesis of Polynucleotides and DNA Antisense Sequences on Polystyrene­Polyethylene glycol Tentacle Polymers, in Solid Phase Synthesis of Peptides, Proteins, Nucleic Acids, Biological and Biomedical Applications, Collected Papers, Third International Symposium, (Epton R., Ed.), 1993, Oxford, U.K., Mayflower Worldwide Limited, Birmingham, 1994, 9-20.
  3. Grübler G., Straubinger H., Reinig W., Echner H., Geiger M., Voelter W., Optimized Solid Phase Synthesis of Oligonucleotides, Using Polyethylene glycol/Polystyrene Copolymers in Solid Phase Synthesis of Peptides, Proteins, Nucleic Acids, Biological and Biomedical Applications, Collected Papers, Third International Symposium, (Epton R., Ed.), 1993, Oxford, U.K., Mayflower Worldwide Limited, Birmingham, 1994, 191-196.
  4. Gao, H.; Gaffney, B. L.; Jones, R. A. H-Phosphonate Oligonucleotide Synthesis on a Polyethylen Glycol/Polystyrene Copolymer. Tetrahedron Lett. 1991, 32 (40), 5477-5480. doi: 10.1016/0040-4039(91)80062-b.
  5. Wright, P.; Lloyd, D.; Rapp, W.; Andrus, A. Large Scale Synthesis of Oligonucleotides via Phosphoramidite Nucleosides and a High-Loaded Polystyrene Support. Tetrahedron Lett. 1993, 34 (21), 3373-3376. doi: 10.1016/s0040-4039(00)79159-3.
  6. Bayer, E. Auf dem Weg zur chemischen Synthese von Proteinen. Angew. Chem. Weinheim Bergstr. Ger. 1991, 103 (2), 117-133. doi: 10.1002/ange.19911030204.
  7. Bleicher K., Thesis, University of Tübingen, 1995
  8. Bayer, E.; Bleicher, K.; Maier, M. Improved Conditions for Solid Phase Synthesis of Oligonucleotides on PS-PEG Copolymers. Z. Naturforsch. B J. Chem. Sci. 1995, 50 (7), 1096-1100. doi: 10.1515/znb-1995-0720.
  9. Weiler J., Maier T., Pfleiderer W., New Supports for "Large Scale" Synthesis of Oligonucleotides in Combination with ß-Eliminating Protecting Groups, in Solid Phase Synthesis of Peptides, Proteins, Nucleic Acids, Biological and Biomedical Applications, Collected Papers, Third International Symposium, (Epton R., Ed.), 1993, Oxford, U.K., Mayflower Worldwide Limited, Birmingham, 1994, 131-134.
  10. Tsou D., Wright P., Lloyd D., Andreus A., Large Scale Synthesis of Oligonucleotides via Phosphoramidite Nucleosides and a High-Loaded Polystyrene Support in Solid Phase Synthesis of Peptides, Proteins, Nucleic Acids, Biological and Biomedical Applications, Collected Papers, Third International Symposium, (Epton R., Ed.), 1993, Oxford, U.K., Mayflower Worldwide Limited, Birmingham, 1994, 125-130.
  11. A. Andrus, presented at the 4th International Symposium on Solid Phase Synthesis, Edinburgh, 1995.

L 24 Library Overview

  1. Furka, et al., 10th Int. Symp. Med. Chem., Budapest, 1988.
  2. Furka, A.; Sebestyén, F.; Asgedom, M.; Dibó, G. General Method for Rapid Synthesis of Multicomponent Peptide Mixtures. Int. J. Pept. Protein Res. 1991, 37 (6), 487-493. doi: 10.1111/j.1399-3011.1991.tb00765.x.
  3. Furka, et al., 14th Int. Cong. of Biochem., Prague, (1988).
  4. Lam, K. S.; Salmon, S. E.; Hersh, E. M.; Hruby, V. J.; Kazmierski, W. M.; Knapp, R. J. A New Type of Synthetic Peptide Library for Identifying Ligand-Binding Activity. Nature 1991, 354 (6348), 82-84. doi: 10.1038/354082a0.

L 25 Libraries

  1. Lebl, M.; Krchnák, V.; Sepetov, N. F.; Seligmann, B.; Strop, P.; Felder, S.; Lam, K. S. One-Bead-One-Structure Combinatorial Libraries. Biopolymers 1995, 37 (3), 177-198. doi: 10.1002/bip.360370303.
  2. Salmon, S. E.; Lam, K. S.; Lebl, M.; Kandola, A.; Khattri, P. S.; Wade, S.; Pátek, M.; Kocis, P.; Krchnák, V.; Thorpe, D. Discovery of Biologically Active Peptides in Random Libraries: Solution-Phase Testing after Staged Orthogonal Release from Resin Beads. Proc. Natl. Acad. Sci. U. S. A. 1993, 90 (24), 11708-11712. doi: 10.1073/pnas.90.24.11708.
  3. Lebl, M.; Krchňák, V.; Salmon, S. E.; Lam, K. S. Screening of Completely Random One-Bead One-Peptide Libraries for Activities in Solution. Methods 1994, 6 (4), 381-387. doi: 10.1006/meth.1994.1038.
  4. Lam, K. S.; Zhao, Z.-G.; Wade, S.; Krchnák, V.; Lebl, M. Identification of Small Peptides That Interact Specifically with a Small Organic Dye. Drug Dev. Res. 1994, 33 (2), 157-160. doi: 10.1002/ddr.430330212.
  5. Nikolaiev V., Stierandová A., Krchñák V., Seligmann B., Lam K.S., Salmon S.E., Lebl M. Peptide-encoding for structure determination of nonsequenceable polymers within libraries -- *Peptide Research, *1993, 6 (3), 161-170.
  6. Lebl, M.; Pátek, M.; Kocis, P.; Krchnák, V.; Hruby, V. J.; Salmon, S. E.; Lam, K. S. Multiple Release of Equimolar Amounts of Peptides from a Polymeric Carrier Using Orthogonal Linkage-Cleavage Chemistry. Int. J. Pept. Protein Res. 1993, 41 (2), 201-203. doi: 10.1111/j.1399-3011.1993.tb00132.x.
  7. Vágner J., Krchñák V., Sepetov N. F., Strop P., Lam K. S., Barany G., Lebl M. Novel Methodology for Differentiation of "Surface" and "Interior" Areas of Polyoxyethylene-Polystyrene (POE-PS) Supports: Application to Library Screening Procedures in Innovation and Perspectives in Solid Phase Synthesis and Related Technologies, Collected Papers, Third Int. Symp. Oxford, England, (Epton R., Ed.), 1994, 347-352.
  8. Lebl M., Krchñák V., Sepetov N. F., Nikolaiev V., Stierandová A., Safar P., Seligmann B., Strop P., Lam K. S., Salmon S. E. One Bead - One Structure Libraries in Innovation and Perspectives in Solid Phase Synthesis and Related Technologies, Collected Papers, Third Int. Symp. Oxford, England, (R. Epton, Ed.), 1994, 233-238.
  9. Lebl M., Krchñák V., Safar P., Stierandová A., Sepetov N. F., Kocis P., Lam K. S., Construction and Screening of Libraries of Peptide and Non-Peptide Structures in *Techniques in Protein Chemistry: V.5; Crabb, J. W., Series Ed.; Academic Press: San Diego, CA,* 1994, 541.
  10. Kočiš, P.; Krchňák, V.; Lebl, M. Symmetrical Structure Allowing the Selective Multiple Release of a Defined Quantity of Peptide from a Single Bead of Polymeric Support. Tetrahedron Lett. 1993, 34 (45), 7251-7252. doi: 10.1016/s0040-4039(00)79300-2.
  11. Torneiro, M.; Still, W. C. Sequence-Selective Binding of Peptides in Water by a Synthetic Receptor Molecule. J. Am. Chem. Soc. 1995, 117 (21), 5887-5888. doi: 10.1021/ja00126a043.
  12. Wennemers, H.; Still, W. C. Peptide Complexation in Water. Tetrahedron Lett. 1994, 35 (35), 6413-6416. doi: 10.1016/s0040-4039(00)78233-5.
  13. Youngquist, R. S.; Fuentes, G. R.; Lacey, M. P.; Keough, T. Generation and Screening of Combinatorial Peptide Libraries Designed for Rapid Sequencing by Mass Spectrometry. J. Am. Chem. Soc. 1995, 117 (14), 3900-3906. doi: 10.1021/ja00119a002.
  14. Wenschuh, H.; Beyermann, M.; Rothemund, S.; Carpino, L. A.; Bienert, M. Multiple Solid Phase Synthesis via Fmoc-Amino Acid Fluorides. Tetrahedron Lett. 1995, 36 (8), 1247-1250. doi: 10.1016/0040-4039(94)02487-v.
  15. Baldwin, J. J.; Burbaum, J. J.; Henderson, I.; Ohlmeyer, M. H. J. Synthesis of a Small Molecule Combinatorial Library Encoded with Molecular Tags. J. Am. Chem. Soc. 1995, 117 (20), 5588-5589. doi: 10.1021/ja00125a022.
  16. Virgilio, A. A.; Ellman, J. A. Simultaneous Solid-Phase Synthesis of .Beta.-Turn Mimetics Incorporating Side-Chain Functionality. J. Am. Chem. Soc. 1994, 116 (25), 11580-11581. doi: 10.1021/ja00104a053.
  17. Fenniri, H.; Janda, K. D.; Lerner, R. A. Encoded Reaction Cassette for the Highly Sensitive Detection of the Making and Breaking of Chemical Bonds. Proc. Natl. Acad. Sci. U. S. A. 1995, 92 (6), 2278-2282. doi: 10.1073/pnas.92.6.2278.
  18. Forman, F. W.; Sucholeiki, I. Solid-Phase Synthesis of Biaryls via the Stille Reaction. J. Org. Chem. 1995, 60 (3), 523-528. doi: 10.1021/jo00108a010.
  19. Look, G. C.; Murphy, M. M.; Campbell, D. A.; Gallop, M. A. Trimethylorthoformate: A Mild and Effective Dehydrating Reagent for Solution and Solid Phase Imine Formation. Tetrahedron Lett. 1995, 36 (17), 2937-2940. doi: 10.1016/0040-4039(95)00442-f.
  20. Rano, T. A.; Chapman, K. T. Solid Phase Synthesis of Aryl Ethers via the Mitsunobu Reaction. Tetrahedron Lett. 1995, 36 (22), 3789-3792. doi: 10.1016/0040-4039(95)00607-e.
  21. Krchňák, V.; Flegelová, Z.; Weichsel, A. S.; Lebl, M. Polymer-Supported Mitsunobu Ether Formation and Its Use in Combinatorial Chemistry. Tetrahedron Lett. 1995, 36 (35), 6193-6196. doi: 10.1016/0040-4039(95)01247-f.
  22. Yan, B.; Kumaravel, G.; Anjaria, H.; Wu, A.; Petter, R. C.; Jewell, C. F., Jr; Wareing, J. R. Infrared Spectrum of a Single Resin Bead for Real-Time Monitoring of Solid-Phase Reactions. J. Org. Chem. 1995, 60 (17), 5736-5738. doi: 10.1021/jo00122a077.
  23. Hauske, J. R.; Dorff, P. A Solid Phase CBZ Chloride Equivalent - a New Matrix Specific Linker. Tetrahedron Lett. 1995, 36 (10), 1589-1592. doi: 10.1016/0040-4039(95)00095-t.
  24. Pátek, M.; Drake, B.; Lebl, M. Solid-Phase Synthesis of “Small” Organic Molecules Based on Thiazolidine Scaffold. Tetrahedron Lett. 1995, 36 (13), 2227-2230. doi: 10.1016/0040-4039(95)00261-a.
  25. Sucholeiki, I. Solid-Phase Photochemical C-S Bond Cleavage of Thioethers-a New Approach to the Solid-Phase Production of Non-Peptide Molecules. Tetrahedron Lett. 1994, 35 (40), 7307-7310. doi: 10.1016/0040-4039(94)85300-2.
  26. Pátek, M.; Drake, B.; Lebl, M. All-Cis Cyclopentane Scaffolding for Combinatorial Solid Phase Synthesis of Small Non-Peptide Compounds. Tetrahedron Lett. 1994, 35 (49), 9169-9172. doi: 10.1016/0040-4039(94)88456-0.
  27. Nielsen J., Brenner S., Janda K. D.Nielsen J, Brenner S, Janda KD. Synthetic methods for the implementation of encoded combinatorial chemistry. J. Am. Chem. Soc. 1993; 115 (21), 9812–9813. doi: 10.1021/ja00074a063.
  28. Campbell, D. A.; Bermak, J. C.; Burkoth, T. S.; Patel, D. V. A Transition State Analog Inhibitor Combinatorial Library. J. Am. Chem. Soc. 1995, 117 (19), 5381-5382. doi: 10.1021/ja00124a030.
  29. Murphy, M. M.; Schullek, J. R.; Gordon, E. M.; Gallop, M. A. Combinatorial Organic Synthesis of Highly Functionalized Pyrrolidines: Identification of a Potent Angiotensin Converting Enzyme Inhibitor from a Mercaptoacyl Proline Library. J. Am. Chem. Soc. 1995, 117 (26), 7029-7030. doi: 10.1021/ja00131a037.
  30. Nicolaou, K. C.; Xiao, X.-Y.; Parandoosh, Z.; Senyei, A.; Nova, M. P. Radiofrequenz-verschlüsselte kombinatorische Chemie. Angew. Chem. Weinheim Bergstr. Ger. 1995, 107 (20), 2476-2479. doi: 10.1002/ange.19951072036.
  31. Burbaum, J. J.; Ohlmeyer, M. H.; Reader, J. C.; Henderson, I.; Dillard, L. W.; Li, G.; Randle, T. L.; Sigal, N. H.; Chelsky, D.; Baldwin, J. J. A Paradigm for Drug Discovery Employing Encoded Combinatorial Libraries. Proc. Natl. Acad. Sci. U. S. A. 1995, 92 (13), 6027-6031. doi: 10.1073/pnas.92.13.6027.
  32. Karnbrock W., Deeg M., Gerhardt J., Rapp W. Solid phase synthesis of hydantoins by thermal cyclization and screening of reaction conditions using APOS 1200. Molecular Diversity, 1998, 4 (3), 165-171. doi: 10.1023/a:1009659303984
  33. Rapp W., Nicholson G., Maier M., Schlotterbeck G., Pursch M., Albert K. Miniaturization in chemistry: Chemical possibilities and physiochemical properties of polymeric microwavesreactors in Innovations and Perspectives in Solid Phase Synthesis & Combinatorial Libraries, Proceedings of the 4th International Symposium 1993, (Epton R., Ed.), Mayflower Scientific Limited, Birmingham, 1996, 97.

L 26 Polystyrene Resins

  1. Merrifield R. B., Peptide synthesis on a solid polymer, Fed. Proc. Fed. Amer. Soc. Exp. Biol., 1962, 21, 412.
  2. Merrifield, R. B. Solid Phase Peptide Synthesis. I. the Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85 (14), 2149-2154. doi: 10.1021/ja00897a025.
  3. Marshall G. R., Merrifield R. B., in Biochemical Aspects of Reactions on Solid Supports, (Stark G., Ed.), Academic Press, N.Y. 1971.
  4. Barany, G., Merrifield, R.B. Solid phase peptide synthesis in The Peptides. Vol. 2, (Gross, E., Meienhofer, J., Eds.), Academic Press. New York, 1979, 2.
  5. Gordon, E. M.; Barrett, R. W.; Dower, W. J.; Fodor, S. P.; Gallop, M. A. Applications of Combinatorial Technologies to Drug Discovery. 2. Combinatorial Organic Synthesis, Library Screening Strategies, and Future Directions. J. Med. Chem. 1994, 37 (10), 1385-1401. doi: 10.1021/jm00036a001.
  6. Gallop, M. A.; Barrett, R. W.; Dower, W. J.; Fodor, S. P.; Gordon, E. M. Applications of Combinatorial Technologies to Drug Discovery. 1. Background and Peptide Combinatorial Libraries. J. Med. Chem. 1994, 37 (9), 1233-1251. doi: 10.1021/jm00035a001.
  7. Combinatorial Peptide and Nonpeptide Libraries: A Handbook, G. Jung, Ed., Wiley-VCH Verlag: Weinheim, Germany, 1996.
  8. Thompson, L. A.; Ellman, J. A. Synthesis and Applications of Small Molecule Libraries. Chem. Rev. 1996, 96 (1), 555-600. doi: 10.1021/cr9402081.

L 27 Bromo Polystyrene Resins

  1. Farrall, M. J.; Frechet, J. M. J. Bromination and Lithiation: Two Important Steps in the Functionalization of Polystyrene Resins. J. Org. Chem. 1976, 41 (24), 3877-3882. doi: 10.1021/jo00886a023.
  2. Fyles, T. M.; Leznoff, C. C. The use of polymer supports in organic synthesis. V. The preparation of monoacetates of symmetrical diols. Can. J. Chem. 1976, 54 (6), 935-942. doi: 10.1139/v76-135.
  3. Randolph, J. T.; McClure, K. F.; Danishefsky, S. J. Major Simplifications in Oligosaccharide Syntheses Arising from a Solid-Phase Based Method: An Application to the Synthesis of the Lewis b Antigen. J. Am. Chem. Soc. 1995, 117 (21), 5712-5719. doi: 10.1021/ja00126a012.
  4. Woolard, F. X.; Paetsch, J.; Ellman, J. A. A Silicon Linker for Direct Loading of Aromatic Compounds to Supports. Traceless Synthesis of Pyridine-Based Tricyclics. J. Org. Chem. 1997, 62 (18), 6102-6103. doi: 10.1021/jo9710745.

L 28 Carboxy Polystyrene Resins

  1. Ayres, J. T.; Mann, C. K. Some Chemical Reactions of Poly(p-Chloromethylstyrene) Resin in Dimethylsulfoxide. J. Polym. Sci. B 1965, 3 (6), 505-508. doi: 10.1002/pol.1965.110030617.
  2. Leznoff C. C., Dixit D. M. The use of polymer supports in organic synthesis.XI.The preparation of monoethers of symmetrical dihydroxy aromatic compounds, Can. J. Chem. 1977, 55 (19), 3351-3355. - Chem. Inf. 1978, 9 (2). doi: 10.1002/chin.197802182
  3. Meyers, H. V.; Dilley, G. J.; Durgin, T. L.; Powers, T. S.; Winssinger, N. A.; Zhu, H.; Pavia, M. R. Multiple Simultaneous Synthesis of Phenolic Libraries. Mol. Divers. 1995, 1 (1), 13-20. doi: 10.1007/bf01715805.

L 29 Formyl Polystyrene Resins

  1. Beebe, X.; Schore, N. E.; Kurth, M. J. Polymer-Supported Synthesis of 2,5-Disubstituted Tetrahydrofurans. J. Am. Chem. Soc. 1992, 114 (25), 10061-10062. doi: 10.1021/ja00051a048.
  2. Schuerch, C.; Frechet, J. M. Solid-Phase Synthesis of Oligosaccharides. I. Preparation of the Solid Support. Poly[p-(1-Propen-3-Ol-1-Yl)Styrene]. J. Am. Chem. Soc. 1971, 93 (2), 492-496. doi: 10.1021/ja00731a031.
  3. Kaldor, S. W.; Siegel, M. G.; Fritz, J. E.; Dressman, B. A.; Hahn, P. J. Use of Solid Supported Nucleophiles and Electrophiles for the Purification of Non-Peptide Small Molecule Libraries. Tetrahedron Lett. 1996, 37 (40), 7193-7196. doi: 10.1016/0040-4039(96)01636-x.
  4. Botti P. et al. New Resins for Chemical Ligation and Cyclization of Unprotected Peptides in Peptides: Chemistry, Structure & Biology, Proceedings of the Fourteenth American Peptide Symposium, 1995, Columbus, Ohio (Kaumaya P. T. P., Hodges R. S., Eds.), England: Mayflower Scientific Ltd., 1996, 855

L 30 4-Formyl-phenoxyethyl Polystyrene Resins (4-Alkoxybenzaldehyde Resin)

  1. Bourne, G. T.; Meutermans, W. D. F.; Alewood, P. F.; McGeary, R. P.; Scanlon, M.; Watson, A. A.; Smythe, M. L. A Backbone Linker for BOC-Based Peptide Synthesis and on-Resin Cyclization: Synthesis of Stylostatin 1. J. Org. Chem. 1999, 64 (9), 3095-3101. doi: 10.1021/jo9818780.
  2. Raju, B.; Kogan, T. P. Use of Halomethyl Resins to Immobilize Amines: An Efficient Method for Synthesis of Sulfonamides and Amides on a Solid Support. Tetrahedron Lett. 1997, 38 (28), 4965-4968. doi: 10.1016/s0040-4039(97)01076-9.
  3. Miller, M. W.; Vice, S. F.; McCombie, S. W. Mild N-Dealkylation of Tertiary, Benzylic Amines with Acid Chlorides: Application to Solid-Phase Chemistry. Tetrahedron Lett. 1998, 39 (21), 3429-3432. doi: 10.1016/s0040-4039(98)00584-x.
  4. Kobayashi, S.; Aoki, Y. P-Benzyloxybenzylamine (BOBA) Resin. A New Polymer-Supported Amine Used in Solid-Phase Organic Synthesis. Tetrahedron Lett. 1998, 39 (40), 7345-7348. doi: 10.1016/s0040-4039(98)01576-7.
  5. Boojamra, C. G.; Burow, K. M.; Ellman, J. A. An Expedient and High-Yielding Method for the Solid-Phase Synthesis of Diverse 1,4-Benzodiazepine-2,5-Diones. J. Org. Chem. 1995, 60 (18), 5742-5743. doi: 10.1021/jo00123a001.

L 31 4-Formyl-3-methoxy-phenoxyethyl Polystyrene Resins (2-Methoxy-4-alkoxybenzaldehyde Resin)

  1. Fivush, A. M.; Willson, T. M. AMEBA: An Acid Sensitive Aldehyde Resin for Solid Phase Synthesis. Tetrahedron Lett. 1997, 38 (41), 7151-7154. doi: 10.1016/s0040-4039(97)01771-1.
  2. Sarantakis, D.; Bicksler, J. J. Solid Phase Synthesis of Sec-Amides and Removal from the Polymeric Support under Mild Conditions. Tetrahedron Lett. 1997, 38 (42), 7325-7328. doi: 10.1016/s0040-4039(97)01779-6.
  3. Dörner , B.; et al. Preparation of Carboxy-Modified Peptide Fragments using Alkyoxybenzaldehyde Resins in Peptides 1998 Proceedings of the Twenty-Fifth European Peptide Symposium, 1998 Budapest, Hungary; (Bajusz, S.; Hudesz, F, Eds.); Akadémiai K: Budapest, Hungary, 1999, 90. ISBN: 9630576228
  4. Mazurov, A. Traceless Synthesis of Benzimidazoles on Solid Support. Bioorg. Med. Chem. Lett. 2000, 10 (1), 67-70. doi: 10.1016/s0960-894x(99)00592-2.
  5. Swayze, E. E. Secondary Amide-Based Linkers for Solid Phase Organic Synthesis. Tetrahedron Lett. 1997, 38 (49), 8465-8468. doi: 10.1016/s0040-4039(97)10281-7.
  6. Bilodeau, M. T.; Cunningham, A. M. Solid-Supported Synthesis of Imidazoles: A Strategy for Direct Resin-Attachment to the Imidazole Core. J. Org. Chem. 1998, 63 (9), 2800-2801. doi: 10.1021/jo980027p.
  7. Farrant, E.; Rahman, S. S. A Solid-Phase Synthetic Route to Substituted 7-Azabenzimidazoles Suitable for Combinatorial Library Synthesis. Tetrahedron Lett. 2000, 41 (28), 5383-5386. doi: 10.1016/s0040-4039(00)00859-5.
  8. Caddick, S.; Hamza, D.; Wadman, S. N. Solid-Phase Intermolecular Radical Reactions 1. Sulfonyl Radical Addition to Isolated Alkenes and Alkynes. Tetrahedron Lett. 1999, 40 (40), 7285-7288. doi: 10.1016/s0040-4039(99)01525-7.

L 32 Hydroxymethyl Polystyrene Resins

  1. Goldwasser, J. M.; Leznoff, C. C. The Solid Phase Synthesis of Monoester Monoamides and Monoester Monoalcohols from Symmetrical Diacid Chlorides. Can. J. Chem. 1978, 56 (11), 1562-1568. doi: 10.1139/v78-253.
  2. Burdick, D. J.; Struble, M. E.; Burnier, J. P. Solid Phase Synthesis of Peptide Para -Nitroanilides. Tetrahedron Lett. 1993, 34 (16), 2589-2592. doi: 10.1016/s0040-4039(00)77632-5.
  3. Barn, D. R.; Richard Morphy, J.; Rees, D. C. Synthesis of an Array of Amides by Aluminium Chloride Assisted Cleavage of Resin-Bound Esters. Tetrahedron Lett. 1996, 37 (18), 3213-3216. doi: 10.1016/0040-4039(96)00498-4.
  4. Schlatter, J. M.; Mazur, R. H. Hydrogenation in Solid Phase Peptide Synthesis. I. Removal of Product from the Resin. Tetrahedron Lett. 1977, 18 (33), 2851-2852. doi: 10.1016/s0040-4039(01)83091-4.
  5. Kurth, M. J.; Ahlberg Randall, L. A.; Chen, C.; Melander, C.; Miller, R. B.; McAlister, K.; Reitz, G.; Kang, R.; Nakatsu, T.; Green, C. Library-Based Lead Compound Discovery: Antioxidants by an Analogous Synthesis/Deconvolutive Assay Strategy. J. Org. Chem. 1994, 59 (20), 5862-5864. doi: 10.1021/jo00099a008.
  6. Stewart J. M., Young J. D., Attachment of Boc-amino acids to hydroxymethyl resin in Solid Phase Peptide Synthesis, 2nd Ed., Rockford, Illinois, Pierce Chemical Company, 1984, 72.
  7. Tietze, L. F.; Steinmetz, A. Stereoselective Solid-Phase Synthesis of Cyclopentane and Cyclohexane Derivatives by Two-Component Domino Reactions: Generation of Combinatorial Libraries. Angew. Chem. Int. Ed. Engl. 1996, 35 (6), 651-652. doi: 10.1002/anie.199606511.
  8. Frenette, R.; Friesen, R. W. Biaryl Synthesis via Suzuki Coupling on a Solid Support. Tetrahedron Lett. 1994, 35 (49), 9177-9180. doi: 10.1016/0040-4039(94)88458-7.
  9. Dressman, B. A.; Spangle, L. A.; Kaldor, S. W. Solid Phase Synthesis of Hydantoins Using a Carbamate Linker and a Novel Cyclization / Cleavage Step. Tetrahedron Lett. 1996, 37 (7), 937-940. doi: 10.1016/0040-4039(95)02395-x.

L 33 Merrifield Resin

  1. Bodanszky M., Hausner Y. S., Ondetti M. A. in Peptide Synthesis, (Gross E., Meienhofer J., Eds.), Academic Press, Y. Wiley, New York, 1976.
  2. Barany, G. and Merrifield, R. B. Solid-phase peptide synthesis, in The Peptides. Analysis, Synthesis, Biology, Vol 2 (Gross, E. and Meienhofer, J., Eds.), Academic, New York, 1980, 1-284
  3. Gisin, B. F. The preparation of Merrifield-resins through total esterification with cesium salts. Helv. Chim. Acta 1973, 56 (5), 1476-1482. doi: 10.1002/hlca.19730560503.
  4. Loffet, A. Improvement to the Esterification Procedure Used in Solid Phase Peptide Synthesis. Int. J. Protein Res. 1971, 3 (5), 297-299. doi: 10.1111/j.1399-3011.1971.tb01723.x.
  5. Wang, S.-S. Solid-Phase Synthesis of Protected Peptide Hydrazides. Preparation and Application of Hydroxymethyl Resin and 3-(p-Benzyloxyphenyl)-1,1-Dimethylpropyloxycarbonylhydrazide Resin. J. Org. Chem. 1975, 40 (9), 1235-1239. doi: 10.1021/jo00897a011.
  6. Kurth, M. J.; Ahlberg Randall, L. A.; Chen, C.; Melander, C.; Miller, R. B.; McAlister, K.; Reitz, G.; Kang, R.; Nakatsu, T.; Green, C. Library-Based Lead Compound Discovery: Antioxidants by an Analogous Synthesis/Deconvolutive Assay Strategy. J. Org. Chem. 1994, 59 (20), 5862-5864. doi: 10.1021/jo00099a008.
  7. Anuradha, M. V.; Ravindranath, B. Ultrasound in Peptide Synthesis. 3 Zinc-Salt Assisted Anchoring of Carboxylic Acids to Merrifield Resin. Tetrahedron 1995, 51 (19), 5671-5674. doi: 10.1016/0040-4020(95)00230-6.
  8. Schlatter, J. M.; Mazur, R. H. Hydrogenation in Solid Phase Peptide Synthesis. I. Removal of Product from the Resin. Tetrahedron Lett. 1977, 18 (33), 2851-2852. doi: 10.1016/s0040-4039(01)83091-4.
  9. Stewart JM, Morris DH, Synthesis of peptide alcohols by the solid phase method, U.S. Patent 4,254,023, US Patent Office, 1981.
  10. Worster, P. M.; McArthur, C. R.; Leznoff, C. C. Asymmetric Synthesis of 2-Alkylcyclohexanones on Solid Phases. Angew. Chem. Int. Ed. Engl. 1979, 18 (3), 221-222. doi: 10.1002/anie.197902211.
  11. Mata, E. G. Β-Lactams on Solid Support: Mild and Efficient Removal of Penicillin Derivatives from Merrifield Resin Using Aluminum Chloride. Tetrahedron Lett. 1997, 38 (36), 6335-6338. doi: 10.1016/s0040-4039(97)01457-3.

L 34 Aminomethyl Polystyrene Resins

  1. Mitchell, A. R.; Kent, S. B. H.; Engelhard, M.; Merrifield, R. B. A New Synthetic Route to Tert-Butyloxycarbonylaminoacyl-4-(Oxymethyl)Phenylacetamidomethyl-Resin, an Improved Support for Solid-Phase Peptide Synthesis. J. Org. Chem. 1978, 43 (14), 2845-2852. doi: 10.1021/jo00408a022.
  2. Kornreich, W.; Anderson, H.; Porter, J.; Vale, W.; Rivier, J. Peptide N-Alkylamides by Solid Phase Synthesis. Int. J. Pept. Protein Res. 1985, 25 (4), 414-420. doi: 10.1111/j.1399-3011.1985.tb02194.x.
  3. Cardno, M.; Bradley, M. A Simple Multiple Release System for Combinatorial Library and Peptide Analysis. Tetrahedron Lett. 1996, 37 (1), 135-138. doi: 10.1016/0040-4039(95)02092-6.

L 35 Fmoc-2,4-dimethoxy-4'-(carboxymethoxy)-benzhydrylamine linked to Aminomethyl Polystyrene Resins (PS AM RAM Resin)

  1. Rink, H. Solid-Phase Synthesis of Protected Peptide Fragments Using a Trialkoxy-Diphenyl-Methylester Resin. Tetrahedron Lett. 1987, 28 (33), 3787-3790. doi: 10.1016/s0040-4039(00)96384-6.

L 36 Trityl Chloride Resins

  1. Leznoff, C. C. The Use of Insoluble Polymer Supports in General Organic Synthesis. Acc. Chem. Res. 1978, 11 (9), 327-333. doi: 10.1021/ar50129a002.
  2. Chen, C.; Randall, L. A. A.; Miller, R. B.; Jones, A. D.; Kurth, M. J. “analogous” Organic Synthesis of Small-Compound Libraries: Validation of Combinatorial Chemistry in Small-Molecule Synthesis. J. Am. Chem. Soc. 1994, 116 (6), 2661-2662. doi: 10.1021/ja00085a073.
  3. Barlos, K.; Gatos, D.; Kallitsis, I.; Papaioannou, D.; Sotiriou, P. Anwendung von 4-Polystyryltriphenylmethylchlorid zur Synthese von Peptiden und Aminosäure-Derivaten. Liebigs Ann. Chem. 1988, 1988 (11), 1079-1081. doi: 10.1002/jlac.198819881110.
  4. Barlos K.; et al. Two-directional solid phase peptide synthesis in Peptides 1992, Proceedings of the22nd European Peptide Symposium (Schneider C. H., Eberle A. N., Eds.), Escom Leiden, 1993, 281
  5. Barlos, K.; Gatos, D.; Kallitsis, J.; Papaphotiu, G.; Sotiriu, P.; Wenqing, Y.; Schäfer, W. Darstellung geschützter peptid-fragmente unter einsatz substituierter triphenylmethyl-harze. Tetrahedron Lett. 1989, 30 (30), 3943-3946. doi: 10.1016/s0040-4039(00)99290-6.
  6. Li, Z.; Ganesan, A. Solid-Phase Functionalization of Heterocycles by Direct Lithiation. Synlett 1998, 1998 (4), 405-406. doi: 10.1055/s-1998-1684.
  7. Manku, S.; Laplante, C.; Kopac, D.; Chan, T.; Hall, D. G. A Mild and General Solid-Phase Method for the Synthesis of Chiral Polyamines. Solution Studies on the Cleavage of Borane-Amine Intermediates from the Reduction of Secondary Amides. J. Org. Chem. 2001, 66 (3), 874-885. doi: 10.1021/jo005647g.
  8. Matthews, D. P.; Green, J. E.; Shuker, A. J. Parallel Synthesis of Alkyl Tetrazole Derivatives Using Solid Support Chemistry. J. Comb. Chem. 2000, 2 (1), 19-23. doi: 10.1021/cc990035z.
  9. Olsen, C. A.; Witt, M.; Jaroszewski, J. W.; Franzyk, H. Solid-Phase Polyamine Synthesis Using Piperazine and Piperidine Building Blocks. Org. Lett. 2003, 5 (22), 4183-4185. doi: 10.1021/ol035610t.
  10. Garibay, P.; Nielsen, J.; Hoeg-Jensen, T. Decarboxylation-Based Traceless Linking with Aroyl Acrylic Acids. Tetrahedron Lett. 1998, 39 (15), 2207-2210. doi: 10.1016/s0040-4039(98)00176-2.

L 37 Chloro-(2’-chloro)trityl Polystyrene Resins

  1. Barlos, K.; Gatos, D.; Kallitsis, J.; Papaphotiu, G.; Sotiriu, P.; Wenqing, Y.; Schäfer, W. Darstellung geschützter Peptidfragmente unter Einsatz substituierter Triphenylmethyl-Harze. Tetrahedron Lett. 1989, 30 (30), 3943-3946. doi: 10.1016/s0040-4039(00)99290-6.
  2. Barlos, K.; Gatos, D.; Kapolos, S.; Papaphotiu, G.; Schäfer, W.; Wenqing, Y. Veresterung von partiell geschützten Peptidfragmenten mit Harzen. Einsatz von 2-Chlortritylchlorid zur Synthese von Leu15 -gastrin I. Tetrahedron Lett. 1989, 30 (30), 3947-3950. doi: 10.1016/s0040-4039(00)99291-8.
  3. Barlos, K.; Gatos, D.; Schäfer, W. Synthesis of Prothymosinα(ProTα)—a Protein Consisting of 109 Amino Acid Residues. Angew. Chem. Int. Ed. Engl. 1991, 30 (5), 590-593. doi: 10.1002/anie.199105901.
  4. Barlos, K., Chatzi, O., Gatos, D., Stavropoulos, G. 2-Chlorotrityl chloride resin, Studies on anchoring of Fmoc-amino acids and peptide cleavage. Int. J. Peptide Protein Res. 1991, 37 (6), 513-520. doi: 10.1111/j.1399-3011.1991.tb00769.x
  5. Barlos, K.; Gatos, D.; Kutsogianni, S.; Papaphotiou, G.; Poulos, C.; Tsegenidis, T. Solid Phase Synthesis of Partially Protected and Free Peptides Containing Disulphide Bonds by Simultaneous Cysteine Oxidation-Release from 2-Chlorotrityl Resin. Int. J. Pept. Protein Res. 1991, 38 (6), 562-568. doi: 10.1111/j.1399-3011.1991.tb01540.x.
  6. Barlos, K.; Gatos, D.; Kapolos, S.; Poulos, C.; Schäfer, W.; Yao, W. Q. Application of 2-Chlorotrityl Resin in Solid Phase Synthesis of (Leu15)-Gastrin I and Unsulfated Cholecystokinin Octapeptide. Selective O-Deprotection of Tyrosine. Int. J. Pept. Protein Res. 1991, 38 (6), 555-561. doi: 10.1111/j.1399-3011.1991.tb01539.x.
  7. Barlos, K.; Gatos, D.; Papaphotiou, G.; Schäfer, W. Synthese von Calcitonin-Derivaten durch Fragmentkondensation in Lösung und am 2-Chlortrityl-Harz. Liebigs Ann. Chem. 1993, 1993 (3), 215-220. doi: 10.1002/jlac.199319930139.
  8. Egner, B. J.; Cardno, M.; Bradley, M. Linkers for Combinatorial Chemistry and Reaction Analysis Using Solid Phase in Situ Mass Spectrometry. J. Chem. Soc. Chem. Commun. 1995, No. 21, 2163-2164. doi: 10.1039/c39950002163.
  9. Leznoff, C. C. The Use of Insoluble Polymer Supports in General Organic Synthesis. Acc. Chem. Res. 1978, 11 (9), 327-333. doi: 10.1021/ar50129a002.
  10. Nash, I. A.; Bycroft, B. W.; Chan, W. C. Dde - A Selective Primary Amine Protecting Group: A Facile Solid Phase Synthetic Approach to Polyamine Conjugates. Tetrahedron Lett. 1996, 37 (15), 2625-2628. doi: 10.1016/0040-4039(96)00344-9.
  11. Hoekstra, W. J.; Greco, M. N.; Yabut, S. C.; Hulshizer, B. L.; Maryanoff, B. E. Solid-Phase Synthesis via N-Terminal Attachment to the 2-Chlorotrityl Resin. Tetrahedron Lett. 1997, 38 (15), 2629-2632. doi: 10.1016/s0040-4039(97)00447-4.
  12. Akaji, K.; Kiso, Y. Macrocyclization on Solid Support Using Heck Reaction. Tetrahedron Lett. 1997, 38 (29), 5185-5188. doi: 10.1016/s0040-4039(97)01123-4.
  13. Marti, R. E.; Bleicher, K. H.; Bair, K. W. Solid Phase Synthesis of β-Peptides via Arndt-Eistert Homologation of Fmoc-Protected Amino Acid Diazoketones. Tetrahedron Lett. 1997, 38 (35), 6145-6148. doi: 10.1016/s0040-4039(97)01420-2.
  14. Bollhagen, R.; Schmiedberger, M.; Barlos, K.; Grell, E. A New Reagent for the Cleavage of Fully Protected Peptides Synthesised on 2-Chlorotrityl Chloride Resin. J. Chem. Soc. Chem. Commun. 1994, No. 22, 2559. doi: 10.1039/c39940002559.
  15. Fujiwara, Y.; Akaji, K.; Y Kiso, Y. Racemization-Free Synthesis of C-Terminal Cysteine-Peptide Using 2-Chlorotrityl Resin. Chem. Pharm. Bull. 1994, 42 (3), 724-726. doi: 10.1248/cpb.42.724.
  16. McNally, J. J.; Youngman, M. A.; Dax, S. L. Mannich Reactions of Resin-Bound Substrates: 2. A Versatile Three-Component Solid-Phase Organic Synthesis Methodology. Tetrahedron Lett. 1998, 39 (9), 967-970. doi: 10.1016/s0040-4039(97)10716-x.
  17. Shankar, B. B.; Yang, D. Y.; Girton, S.; Ganguly, A. K. One Pot Solid Phase Synthesis of Isoxazolines. Tetrahedron Lett. 1998, 39 (17), 2447-2448. doi: 10.1016/s0040-4039(98)00237-8.

L 38 Polystyrene-2-Cl-Trt AA Resins

  1. Barlos, K.; Gatos, D.; Kallitsis, J.; Papaphotiu, G.; Sotiriu, P.; Wenqing, Y.; Schäfer, W. Darstellung geschützter Peptidfragmente unter Einsatz substituierter Triphenylmethyl-Harze. Tetrahedron Lett. 1989, 30 (30), 3943-3946. doi: 10.1016/s0040-4039(00)99290-6.
  2. Barlos, K.; Gatos, D.; Kapolos, S.; Papaphotiu, G.; Schäfer, W.; Wenqing, Y. Veresterung von partiell geschützten Peptidfragmenten mit Harzen. Einsatz von 2-Chlortritylchlorid zur Synthese von Leu15 -gastrin I. Tetrahedron Lett. 1989, 30 (30), 3947-3950. doi: 10.1016/s0040-4039(00)99291-8.
  3. Barlos, K.; Gatos, D.; Schäfer, W. Synthesis of Prothymosinα(ProTα)—a Protein Consisting of 109 Amino Acid Residues. Angew. Chem. Int. Ed. Engl. 1991, 30 (5), 590-593. doi: 10.1002/anie.199105901.
  4. Barlos, K.; Gatos, D.; Papaphotiou, G.; Schäfer, W. Synthese von Calcitonin-Derivaten durch Fragmentkondensation in Lösung und am 2-Chlortrityl-Harz. Liebigs Ann. Chem. 1993, 1993 (3), 215-220. doi: 10.1002/jlac.199319930139.
  5. Barlos, K., Chatzi, O., Gatos, D., Stavropoulos, G. 2-Chlorotrityl chloride resin, Studies on anchoring of Fmoc-amino acids and peptide cleavage. Int. J. Peptide Protein Res. 1991, 37 (6), 513-520. doi: 10.1111/j.1399-3011.1991.tb00769.x
  6. Barlos, K.; Gatos, D.; Kutsogianni, S.; Papaphotiou, G.; Poulos, C.; Tsegenidis, T. Solid Phase Synthesis of Partially Protected and Free Peptides Containing Disulphide Bonds by Simultaneous Cysteine Oxidation-Release from 2-Chlorotrityl Resin. Int. J. Pept. Protein Res. 1991, 38 (6), 562-568. doi: 10.1111/j.1399-3011.1991.tb01540.x.
  7. Barlos, K.; Gatos, D.; Kapolos, S.; Poulos, C.; Schäfer, W.; Yao, W. Q. Application of 2-Chlorotrityl Resin in Solid Phase Synthesis of (Leu15)-Gastrin I and Unsulfated Cholecystokinin Octapeptide. Selective O-Deprotection of Tyrosine. Int. J. Pept. Protein Res. 1991, 38 (6), 555-561. doi: 10.1111/j.1399-3011.1991.tb01539.x.

L 39 Wang Resin

  1. Wang, S.-S. P-Alkoxybenzyl Alcohol Resin Andp-Alkoxybenzyloxycarbonylhydrazide Resin for Solid Phase Synthesis of Protected Peptide Fragments. J. Am. Chem. Soc. 1973, 95 (4), 1328-1333. doi: 10.1021/ja00785a602.
  2. Lu, G.-S.; Mojsov, S.; Tam, J. P.; Merrifield, R. B. Improved Synthesis of 4-Alkoxybenzyl Alcohol Resin. J. Org. Chem. 1981, 46 (17), 3433-3436. doi: 10.1021/jo00330a009.
  3. Hamper, B. C.; Dukesherer, D. R.; South, M. S. Solid-Phase Synthesis of Proline Analogs via a Three Component 1,3-Dipolar Cycloaddition. Tetrahedron Lett. 1996, 37 (21), 3671-3674. doi: 10.1016/0040-4039(96)00659-4.
  4. Zhang, C.; Moran, E. J.; Woiwode, T. F.; Short, K. M.; Mjalli, A. M. M. Synthesis of Tetrasubstituted Imidazoles via α-(N-Acyl-N-Alkylamino)-β-Ketoamides on Wang Resin. Tetrahedron Lett. 1996, 37 (6), 751-754. doi: 10.1016/0040-4039(95)02310-0.
  5. Wang, Y.; Wilson, S. R. Solid Phase Synthesis of 2,3-Dihydro-4-Pyridones: Reaction of Danishefsky’s Diene with Polymer-Bound Imines. Tetrahedron Lett. 1997, 38 (23), 4021-4024. doi: 10.1016/s0040-4039(97)00824-1.
  6. Hauske, J. R.; Dorff, P. A Solid Phase CBZ Chloride Equivalent - a New Matrix Specific Linker. Tetrahedron Lett. 1995, 36 (10), 1589-1592. doi: 10.1016/0040-4039(95)00095-t.
  7. Hanessian, S.; Hoan Khai, H. Solution and Solid Phase P-Alkoxybenzylation of Alcohols under Neutral Conditions. Tetrahedron Lett. 1999, 40 (4), 671-674. doi: 10.1016/s0040-4039(98)02531-3.

L 40 HMBA Linker

  1. Sheppard, R. C.; Williams, B. J. Acid-Labile Resin Linkage Agents for Use in Solid Phase Peptide Synthesis. Int. J. Pept. Protein Res. 1982, 20 (5), 451-454. doi: 10.1111/j.1399-3011.1982.tb03067.x.
  2. Atherton E., Sheppard R. C. in Solid Phase Peptide Synthesis: A Practical Approach; Atherton, E., Sheppard, R. A., Eds.; Oxford University Press: London, England, 1989, 152.
  3. Stewart J. M., Young J. D., in Solid Phase Peptide Synthesis, 2nd Ed., Rockford, Illinois, Pierce Chemical Company, 1984, 91.

L 41 HMPA Linker

  1. Atherton, E.; Fox, H.; Harkiss, D.; Logan, C. J.; Sheppard, R. C.; Williams, B. J. A Mild Procedure for Solid Phase Peptide Synthesis: Use of Fluorenylmethoxycarbonylamino-Acids. J. Chem. Soc. Chem. Commun. 1978, No. 13, 537, 539. doi: 10.1039/c39780000537.
  2. Dryland, A.; Sheppard, R. C. Peptide synthesis. Part 8. A system for solid-phase synthesis under low pressure -- J. Chem. Soc., Perkin 1, 1986, 125-137. doi: 10.1039/P19860000125

L 42 Polystyrene-PHB - AA Fmoc Resins

  1. Wang, S. S. Solid Phase Synthesis of Protected Peptides via Photolytic Cleavage of the Alpha-Methylphenacyl Ester Anchoring Linkage. J. Org. Chem. 1976, 41 (20), 3258-3261. doi: 10.1021/jo00882a010.
  2. Lu, G.-S.; Mojsov, S.; Tam, J. P.; Merrifield, R. B. Improved Synthesis of 4-Alkoxybenzyl Alcohol Resin. J. Org. Chem. 1981, 46 (17), 3433-3436. doi: 10.1021/jo00330a009.
  3. Sieber, P. An Improved Method for Anchoring of 9-Fluorenylmethoxycarbonyl-Amino Acids to 4-Alkoxybenzyl Alcohol Resins. Tetrahedron Lett. 1987, 28 (49), 6147-6150. doi: 10.1016/s0040-4039(00)61832-4.

L 43 REM Resins

  1. Brown, A. R.; Rees, D. C.; Rankovic, Z.; Morphy, J. R. Synthesis of Tertiary Amines Using a Polystyrene (REM) Resin. J. Am. Chem. Soc. 1997, 119 (14), 3288-3295. doi: 10.1021/ja963829f.
  2. Bom, A.; Booth, S.; Bruin, J.; Clark, J.; Miller, S.; Wathey, B. Parallel Solid-Phase Synthesis of Zatebradine Analogues as Potential If Channel Blockers. Bioorg. Med. Chem. Lett. 2001, 11 (17), 2351-2354. doi: 10.1016/s0960-894x(01)00424-3.
  3. Cottney, J.; Rankovic, Z.; Morphy, J. R. Synthesis of Novel Analogues of the Delta Opioid Ligand SNC-80 Using REM Resin. Bioorg. Med. Chem. Lett. 1999, 9 (9), 1323-1328. doi: 10.1016/s0960-894x(99)00173-0.

L 44 Polymeric Reagents

  1. Fyles, T. M.; Leznoff, C. C. The use of polymer supports in organic synthesis. V. The preparation of monoacetates of symmetrical diols. Can. J. Chem. 1976, 54 (6), 935-942. doi: 10.1139/v76-135.
  2. Crosby, G. A.; Weinshenker, N. M.; Uh, H.-S. Polymeric Reagents. III. Synthesis of an Insoluble Polymeric Thioanisole and Its Utilization for the Oxidation of Alcohols. J. Am. Chem. Soc. 1975, 97 (8), 2232-2235. doi: 10.1021/ja00841a039.
  3. Weinshenker, N. M.; Shen, C.-M. Polymeric Reagents I. Synthesis of an Insoluble Polymeric Carbodiimide. Tetrahedron Lett. 1972, 13 (32), 3281-3284. doi: 10.1016/s0040-4039(01)94023-7.
  4. Daly, W. H. Influence of Support Structure on Preparation and Utilization of Polymeric Reagents. Makromol. Chem. 1979, 2 (S19791), 3-25. doi: 10.1002/macp.1979.020021979101.
  5. Overberger, C. G.; Sannes, K. N. Polymere als Reagentien für organische Synthesen. Angew. Chem. Weinheim Bergstr. Ger. 1974, 86 (4), 139-145. doi: 10.1002/ange.19740860402.
  6. Akelah, A.; Sherrington, D. C. Recent Developments in the Application of Functionalized Polymers in Organic Synthesis. Polymer (Guildf.) 1983, 24 (11), 1369-1386. doi: 10.1016/0032-3861(83)90218-5.
  7. Atherton, E.; Sheppard, R. C. in Peptides 1974: Proceedings of the Thirteenth European Peptide Symposium (Wolman, Y., Ed.), Kiryat, 'Anavim, Israel, Wiley & Sons, NY (1975), 123.

L 45 Triphenylphosphine Resins

  1. Bernard, M.; Ford, W. T. Wittig Reagents Bound to Crosslinked Polystyrenes. J. Org. Chem. 1983, 48 (3), 326-332. doi: 10.1021/jo00151a010.
  2. Hodge, P.; Richardson, G., Conversion of acids -- and alcohols into -- chlorides using a polymer-supported phosphine, Chem. Commun., 1975, 15, 622-623. doi: 10.1039/c39750000622.
  3. Caputo, R.; Ferreri, C.; Noviello, S.; Palumbo, G. Use of Polymeric Phosphine-Halogen Complexes in the Conversion of Epoxides to Halohydrins. Synthesis (Mass.) 1986, 1986 (06), 499-501. doi: 10.1055/s-1986-31689.
  4. Caputo, R.; Ferreri, C.; Palumbo, G. A New Ready, High-Yielding, General Procedure for Acetalization of Carbonyl Compounds. Synthesis (Mass.) 1987, 1987 (04), 386-389. doi: 10.1055/s-1987-27955.
  5. Hughes, I. Application of Polymer-Bound Phosphonium Salts as Traceless Supports for Solid Phase Synthesis. Tetrahedron Lett. 1996, 37 (42), 7595-7598. doi: 10.1016/0040-4039(96)01669-3.
  6. Fenger, I.; Le Drian, C. Reusable Polymer-Supported Palladium Catalysts: An Alternative to Tetrakis(Triphenylphosphine)Palladium in the Suzuki Cross-Coupling Reaction. Tetrahedron Lett. 1998, 39 (24), 4287-4290. doi: 10.1016/s0040-4039(98)00757-6.

L 46 Diol Resins

  1. Leznoff, C. C.; Wong, J. Y. The Use of Polymer Supports in Organic Synthesis. III. Selective Chemical Reactions on One Aldehyde Group of Symmetrical Dialdehydes. Can. J. Chem. 1973, 51 (22), 3756-3764. doi: 10.1139/v73-561.
  2. Chamoin, S.; Houldsworth, S.; Kruse, C. G.; Iwema Bakker, W.; Snieckus, V. The Suzuki-Miyaura Cross Coupling Reactions on Solid Support. Link to Solution Phase Directed Ortho Metalation. The Leznoff Acetal Linker Approach to Biaryl and Heterobiaryl Aldehydes. Tetrahedron Lett. 1998, 39 (24), 4179-4182. doi: 10.1016/s0040-4039(98)00779-5.
  3. Maltais, R.; Bérubé, M.; Marion, O.; Labrecque, R.; Poirier, D. Efficient Coupling and Solid-Phase Synthesis of Steroidal Ketone Derivative Using Polymer-Bound Glycerol. Tetrahedron Lett. 2000, 41 (11), 1691-1694. doi: 10.1016/s0040-4039(00)00050-2.

L 47 Bromo Acetal Resins

  1. M. Patek, Lecture at Combinatorial Chemistry, London, July 11-14, 2000.
  2. Vojkovský, T.; Weichsel, A.; Pátek, M. Solid-Phase Synthesis of Heterocycles Containing an 1-Acyl-3-Oxopiperazine Skeleton. J. Org. Chem. 1998, 63 (10), 3162-3163. doi: 10.1021/jo980203u.

L 48 Scavenger Resins

  1. Kaldor, S. W.; Siegel, M. G.; Fritz, J. E.; Dressman, B. A.; Hahn, P. J. Use of Solid Supported Nucleophiles and Electrophiles for the Purification of Non-Peptide Small Molecule Libraries. Tetrahedron Lett. 1996, 37 (40), 7193-7196. doi: 10.1016/0040-4039(96)01636-x.
  2. Booth, R. J.; Hodges, J. C. Polymer-Supported Quenching Reagents for Parallel Purification. J. Am. Chem. Soc. 1997, 119 (21), 4882-4886. doi: 10.1021/ja9634637.
  3. Creswell, M. W.; Bolton, G. L.; Hodges, J. C.; Meppen, M. Combinatorial Synthesis of Dihydropyridone Libraries and Their Derivatives. Tetrahedron 1998, 54 (16), 3983-3998. doi: 10.1016/s0040-4020(98)00130-6.
  4. Flynn, D. L.; Crich, J. Z.; Devraj, R. V.; Hockerman, S. L.; Parlow, J. J.; South, M. S.; Woodard, S. Chemical Library Purification Strategies Based on Principles of Complementary Molecular Reactivity and Molecular Recognition. J. Am. Chem. Soc. 1997, 119 (21), 4874-4881. doi: 10.1021/ja963462e.
  5. Lawrence, R. M.; Biller, S. A.; Fryszman, O. M.; Poss, M. A. Automated Synthesis and Purification of Amides: Exploitation of Automated Solid Phase Extraction in Organic Synthesis. Synthesis (Mass.) 1997, 1997 (05), 553-558. doi: 10.1055/s-1997-1232.
  6. Suto, M. J.; Gayo-Fung, L. M.; Palanki, M. S. S.; Sullivan, R. Solution-Phase Parallel Synthesis Using Ion-Exchange Resins. Tetrahedron 1998, 54 (16), 4141-4150. doi: 10.1016/s0040-4020(98)00141-0.

L 49 PEGs

  1. Bückmann, A. F.; Morr, M.; Johansson, G. Functionalization of poly(ethylene glycol) and monomethoxy-poly(ethylene glycol), Makromol. Chem. 1981, 182 (5), 1379-1384. doi: 10.1002/macp.1981.021820509.
  2. Pillai, V. N. R.; Mutter, M.; Bayer, E.; Gatfield, I. New, Easily Removable Poly(Ethylene Glycol) Supports for the Liquid-Phase Method of Peptide Synthesis. J. Org. Chem. 1980, 45 (26), 5364-5370. doi: 10.1021/jo01314a032.
  3. Harris, J. M.; Struck, E. C.; Case, M. G.; Paley, M. S.; Yalpani, M.; Van Alstine, J. M.; Brooks, D. E. Synthesis and Characterization of Poly(Ethylene Glycol) Derivatives. J. Polym. Sci. Polym. Chem. Ed. 1984, 22 (2), 341-352. doi: 10.1002/pol.1984.170220207.
  4. Zalipsky, S.; Gilon, C.; Zilkha, A. Attachment of Drugs to Polyethylene Glycols. Eur. Polym. J. 1983, 19 (12), 1177-1183. doi: 10.1016/0014-3057(83)90016-2.
  5. Abuchowski, A.; van Es, T.; Palczuk, N. C.; Davis, F. F. Alteration of Immunological Properties of Bovine Serum Albumin by Covalent Attachment of Polyethylene Glycol. J. Biol. Chem. 1977, 252 (11), 3578-3581. doi: 10.1016/s0021-9258(17)40291-2.
  6. Cordes, A.; Kula, M.-R. Process Design for Large-Scale Purification of Formate Dehydrogenase Fromcandida Boidinii by Affinity Partition. J. Chromatogr. 1986, 376, 375-384. doi: 10.1016/s0378-4347(00)80853-1.
  7. Wirth, P.; Souppe, J.; Tritsch, D.; Biellmann, J.-F. Chemical Modification of Horseradish Peroxidase with Ethanal-Methoxypolyethylene Glycol: Solubility in Organic Solvents, Activity, and Properties. Bioorg. Chem. 1991, 19 (2), 133-142. doi: 10.1016/0045-2068(91)90029-o.
  8. Kogan, T. P. The Synthesis of Substituted Methoxy-Poly(Ethyleneglycol) Derivatives Suitable for Selective Protein Modification. Synth. Commun. 1992, 22 (16), 2417-2424. doi: 10.1080/00397919208019100.
  9. S. Romani, S.; et al. in Chemistry of Peptides and Proteins (W. Voelter et al., Eds.), Walter de Gruyter,Berlin, Vol. 2, 1984, 29.
  10. Sépulchre, M.; Paulus, G.; Jérôme, R. Specific Functionalization of Polyoxirane by Amino, Carboxyl, Sulfo, and Halogeno End Groups. Makromol. Chem. 1983, 184 (9), 1849-1859. doi: 10.1002/macp.1983.021840910.
  11. Topchieva, I. N.; Kuzaev, A. I.; Zubov, V. P. Modification of Polyethylene Glycol. Eur. Polym. J. 1988, 24 (9), 899-904. doi: 10.1016/0014-3057(88)90166-8.
  12. S. Zalipsky, S.; et al. in Peptides: Structure and Function (V. J. Hruby, K. H. Kopple, eds.), Pierce Chem. Co., Rockford, IL, 1985, 257.
  13. Harris, J. M. (Ed.), Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications, PlenumPress, New York and London, 1992.
  14. Phar. Manufacturing (2007) Issue 1, pp. 34.

L 50 Total Protected Peptide Amides

  1. Backes, B. J.; Ellman, J. A. Carbon-Carbon Bond-Forming Methods on Solid Support. Utilization of Kenner’s “Safety-Catch” Linker. J. Am. Chem. Soc. 1994, 116 (24), 11171-11172. doi: 10.1021/ja00103a048.
  2. Holmes, C. P.; Jones, D. G. Reagents for Combinatorial Organic Synthesis: Development of a New o-Nitrobenzyl Photolabile Linker for Solid Phase Synthesis. J. Org. Chem. 1995, 60 (8), 2318-2319. doi: 10.1021/jo00113a004.
  3. Sieber, P. A New Acid-Labile Anchor Group for the Solid-Phase Synthesis of C-Terminal Peptide Amides by the Fmoc Method. Tetrahedron Lett. 1987, 28 (19), 2107-2110. doi: 10.1016/s0040-4039(00)96055-6.
  4. Gatos, D., & Tzavara, C. Comparison of the solid-phase fragment condensation and phase-change approaches in the synthesis of salmon I calcitonin. The Journal of Peptide Research. 2001, 57(2), 168–174. doi:10.1046/j.1397-002x.2000.00000_1.

L 51 Sulphonic Acid Resins

  1. Flynn, D. L.; Crich, J. Z.; Devraj, R. V.; Hockerman, S. L.; Parlow, J. J.; South, M. S.; Woodard, S. Chemical Library Purification Strategies Based on Principles of Complementary Molecular Reactivity and Molecular Recognition. J. Am. Chem. Soc. 1997, 119 (21), 4874-4881. doi: 10.1021/ja963462e.
  2. Gayo, L. M.; Suto, M. J. Ion-Exchange Resins for Solution Phase Parallel Synthesis of Chemical Libraries. Tetrahedron Lett. 1997, 38 (4), 513-516. doi: 10.1016/s0040-4039(96)02362-3.
  3. Siegel, M. G.; Hahn, P. J.; Dressman, B. A.; Fritz, J. E.; Grunwell, J. R.; Kaldor, S. W. Rapid Purification of Small Molecule Libraries by Ion Exchange Chromatography. Tetrahedron Lett. 1997, 38 (19), 3357-3360. doi: 10.1016/s0040-4039(97)00650-3.
  4. Shuker, A. J.; Siegel, M. G.; Matthews, D. P.; Weigel, L. O. The Application of High-Throughput Synthesis and Purification to the Preparation of Ethanolamines. Tetrahedron Lett. 1997, 38 (35), 6149-6152. doi: 10.1016/s0040-4039(97)01421-4.
  5. Lawrence, R. M.; Biller, S. A.; Fryszman, O. M.; Poss, M. A. Automated Synthesis and Purification of Amides: Exploitation of Automated Solid Phase Extraction in Organic Synthesis. Synthesis (Mass.) 1997, 1997 (05), 553-558. doi: 10.1055/s-1997-1232.
  6. Parlow, J. J.; Flynn, D. L. Solution-Phase Parallel Synthesis of a Benzoxazinone Library Using Complementary Molecular Reactivity and Molecular Recognition (CMR/R) Purification Technology. Tetrahedron 1998, 54 (16), 4013-4031. doi: 10.1016/s0040-4020(98)00132-x.

L 52 Chlorosulfonated Resins

  1. Rueter, J. K.; Nortey, S. O.; Baxter, E. W.; Leo, G. C.; Reitz, A. B. Arylsulfonate Esters in Solid Phase Organic Synthesis. I. Cleavage with Amines, Thiolate, and Imidazole. Tetrahedron Lett. 1998, 39 (9), 975-978. doi: 10.1016/s0040-4039(97)10719-5.
  2. Baxter, E. W.; Rueter, J. K.; Nortey, S. O.; Reitz, A. B. Arylsulfonate Esters in Solid Phase Organic Synthesis. II. Compatibility with Commonly-Used Reaction Conditions. Tetrahedron Lett. 1998, 39 (9), 979-982. doi: 10.1016/s0040-4039(97)10718-3.
  3. Zhong, H. M.; Greco, M. N.; Maryanoff, B. E. Solid-Phase Synthesis of Arginine-Containing Peptides by Guanidine Attachment to a Sulfonyl Linker. J. Org. Chem. 1997, 62 (26), 9326-9330. doi: 10.1021/jo970736n.
  4. Huang, W.; et al., Polystyrylsulfonyl Chloride: A useful, reactive intermediate for preparation of fuctionalized polymers Chin. J. Reactive Polymers (Engl.), 1992, 1, 61-70.
  5. Hunt, J. A.; Roush, W. R. Solid-Phase Synthesis of 6-Deoxyoligosaccharides. J. Am. Chem. Soc. 1996, 118 (41), 9998-9999. doi: 10.1021/ja962128f.
  6. Takahashi, T.; Ebata, S.; Doi, T. Solid Phase Approach to Muscone Synthesis: Rh(I)-Catalyzed Hydroformylation of a 1,1-Disubstituted Alkene on the MultipinTM System. Tetrahedron Lett. 1998, 39 (11), 1369-1372. doi: 10.1016/s0040-4039(97)10847-4.
  7. Zhang, H. C.; Ye, H.; Moretto, A. F.; Brumfield, K. K.; Maryanoff, B. E. Facile Solid-Phase Construction of Indole Derivatives Based on a Traceless, Activating Sulfonyl Linker. Org. Lett. 2000, 2 (1), 89-92. doi: 10.1021/ol991255o.
  8. Brummond, K. M.; Gesenberg, K. D. α-Chlorination of Ketones Using p-Toluenesulfonyl Chloride. Tetrahedron Lett. 1999, 40 (12), 2231-2234. doi: 10.1016/s0040-4039(99)00213-0.
  9. Pirrung, M. C.; Tumey, L. N. Oxazoline Synthesis from Hydroxyamides by Resin Capture and Ring-Forming Release. J. Comb. Chem. 2000, 2 (6), 675-680. doi: 10.1021/cc000047g.
  10. Hansen, H. C.; Olsson, R.; Croston, G.; Andersson, C. M. Multistep Solution-Phase Parallel Synthesis of Spiperone Analogues. Bioorg. Med. Chem. Lett. 2000, 10 (21), 2435-2439. doi: 10.1016/s0960-894x(00)00483-2.
  11. Yoshida, Y. Facile and Practical Methods for the Sulfonylation of Alcohols Using Ts(Ms)Cl and Me2N(CH2)NNMe2 as a Key Base. Synthesis (Mass.) 1999, 1999 (09), 1633-1636. doi: 10.1055/s-1999-3561.
  12. Kamogawa, H.; Kanzawa, A.; Kadoya, M.; Naito, T.; Nanasawa, M. Conversions of Carbonyl CompoundsviaTheir Polymeric Sulfonylhydrazones into Alkenes, Alkanes, and Nitriles. Bull. Chem. Soc. Jpn. 1983, 56 (3), 762-765. doi: 10.1246/bcsj.56.762.
  13. Hu, Y.; Baudart, S.; Porco, J. A. Parallel Synthesis of 1,2,3-Thiadiazoles Employing a “Catch and Release” Strategy. J. Org. Chem. 1999, 64 (3), 1049-1051. doi: 10.1021/jo981874v.
  14. Dürr, H.; Hauck, G.; Brück, W.; Kober, H. Polymergebundenes Sulfonylazid Zur Entformylierenden Diazogruppen-Übertragung Und Zur Diazo -Cyclopolyen -Synthese / Polymer Anchored Sulfonylazide for Deformylating Diazo Group Transfer and the Synthesis of Diazo-Cyclopolyenes. Z. Naturforsch. B J. Chem. Sci. 1981, 36 (9), 1149-1152. doi: 10.1515/znb-1981-0918.

L 53 Thiol Resins

  1. Kobayashi, S.; Hachiya, I.; Yasuda, M. Aldol Reactions on Solid Phase. Sc(OTf)3-Catalyzed Aldol Reactions of Polymer-Supported Silyl Enol Ethers with Aldehydes Providing Convenient Methods for the Preparation of 1,3-Diol, β-Hydroxy Carboxylic Acid, and β-Hydroxy Aldehyde Libraries. Tetrahedron Lett. 1996, 37 (31), 5569-5572. doi: 10.1016/0040-4039(96)01158-6.
  2. Kobayashi, S.; Wakabayashi, T.; Yasuda, M. Efficient Synthesis of Diverse Monosaccharide Derivatives in the Solid Phase. J. Org. Chem. 1998, 63 (15), 4868-4869. doi: 10.1021/jo9802776.
  3. Gibson, C. L.; La Rosa, S.; Suckling, C. J. A Traceless Solid-Phase Synthesis of Pteridines. Tetrahedron Lett. 2003, 44 (6), 1267-1270. doi: 10.1016/s0040-4039(02)02782-x.

L 54 Nitrophenyl Carbonate Resins

  1. Dixit, D. M.; Leznoff, C. C. Insoluble Polymer Supports as Monoblocking Agents of Symmetrical Diamines. J. Chem. Soc. Chem. Commun. 1977, No. 22, 798-799. doi: 10.1039/c39770000798.
  2. Dixit, D. M.; Leznoff, C. C. The Use of Polymer Supports in Organic Synthesis. 17. The Synthesis of Unsymmetrical Diamides and Monoamide Monotosylamides from Symmetrical Diamines. Isr. J. Chem. 1978, 17 (4), 248-252. doi: 10.1002/ijch.197800044.
  3. Giralt, E.; Rizo, J.; Pedroso, E. Application of Gel-Phase 13c-Nmr to Monitor Solid Phase Peptide Synthesis. Tetrahedron 1984, 40 (20), 4141-4152. doi: 10.1016/0040-4020(84)85095-4.
  4. Dressman, B. A.; Singh, U.; Kaldor, S. W. Solid Phase Synthesis of Urea Libraries Using a Diversifiable Thiophenoxy Carbonyl Linker. Tetrahedron Lett. 1998, 39 (22), 3631-3634. doi: 10.1016/s0040-4039(98)00652-2.
  5. Brady, S. F.; Stauffer, K. J.; Lumma, W. C.; Smith, G. M.; Ramjit, H. G.; Lewis, S. D.; Lucas, B. J.; Gardell, S. J.; Lyle, E. A.; Appleby, S. D.; Cook, J. J.; Holahan, M. A.; Stranieri, M. T.; Lynch, J. J., Jr; Lin, J. H.; Chen, I. W.; Vastag, K.; Naylor-Olsen, A. M.; Vacca, J. P. Discovery and Development of the Novel Potent Orally Active Thrombin Inhibitor N-(9-Hydroxy-9-Fluorenecarboxy)Prolyl Trans-4-Aminocyclohexylmethyl Amide (L-372,460): Coapplication of Structure-Based Design and Rapid Multiple Analogue Synthesis on Solid Support. J. Med. Chem. 1998, 41 (3), 401-406. doi: 10.1021/jm9705014.
  6. Yang, L. Facile Cleavage of the Carbamate Linker of Hydroxymethyl Resin and Its Application in Syntheses Requiring Strongly Acidic Conditions. Tetrahedron Lett. 2000, 41 (36), 6981-6984. doi: 10.1016/s0040-4039(00)01192-8.
  7. Ho, C. Y.; Kukla, M. J. Carbamate Linkers as Latent N-Methylamines in Solid Phase Synthesis. Tetrahedron Lett. 1997, 38 (16), 2799-2802. doi: 10.1016/s0040-4039(97)00510-8.
  8. Hauske, J. R.; Dorff, P. A Solid Phase CBZ Chloride Equivalent — a New Matrix Specific Linker. Tetrahedron Lett. 1995, 36 (10), 1589-1592. doi: 10.1016/0040-4039(95)00095-t.
  9. Li, W.-R.; Lin, Y.-S.; Yo, Y.-C. Lewis Acid-Catalyzed Cleavage of Carbamate and Carbonate Resins. Tetrahedron Lett. 2000, 41 (34), 6619-6622. doi: 10.1016/s0040-4039(00)01131-x.
  10. His, S.; Meyer, C.; Cossy, J.; Emeric, G.; Greiner, A. Solid Phase Synthesis of Amides by the Beckmann Rearrangement of Ketoxime Carbonates. Tetrahedron Lett. 2003, 44 (47), 8581-8584. doi: 10.1016/j.tetlet.2003.09.113.
  11. Park, K.-H.; Cox, L. J. Solid-Phase Synthesis of 1,2,4-Triazolidine-3,5-Diones. Tetrahedron Lett. 2002, 43 (21), 3899-3901. doi: 10.1016/s0040-4039(02)00701-3.
  12. Paio, A.; Gehanne, S.; Grandini, E.; Reginato, G.; Seneci, P. A New Analytical Method for Anchoring Quantification of Amines on Resin Support. Tetrahedron Lett. 2003, 44 (9), 1867-1870. doi: 10.1016/s0040-4039(03)00090-x.
  13. Salvino, J. M.; Gerard, B.; Ye, H. F.; Sauvagnat, B.; Dolle, R. E. The Solid-Phase Synthesis and Use of N-Monosubstituted Piperazines in Chemical Library Synthesis. J. Comb. Chem. 2003, 5 (3), 260-266. doi: 10.1021/cc020060w.
  14. Wang, C.-C.; Li, W.-R. Traceless Solid-Phase Synthesis of Substituted Benzimidazolones. J. Comb. Chem. 2004, 6 (6), 899-902. doi: 10.1021/cc049926j.
  15. Ghosh, A. K.; Hol, W. G. J.; Fan, E. Solid-Phase Synthesis of N-Acyl-N‘-Alkyl/Aryl Disubstituted Guanidines. J. Org. Chem. 2001, 66 (6), 2161-2164. doi: 10.1021/jo001420+.
  16. Crimmins, M. T.; Zuercher, W. J. Solid-Phase Synthesis of Carbocyclic Nucleosides. Org. Lett. 2000, 2 (8), 1065-1067. doi: 10.1021/ol005614n.
  17. Smith, A. L.; Stevenson, G. I.; Lewis, S.; Patel, S.; Castro, J. L. Solid-Phase Synthesis of 2,3-Disubstituted Indoles: Discovery of a Novel, High-Affinity, Selective H5-HT2A Antagonist. Bioorg. Med. Chem. Lett. 2000, 10 (24), 2693-2696. doi: 10.1016/s0960-894x(00)00558-8.
  18. Rabinowitz, M.; Seneci, P.; Rossi, T.; Dal Cin, M.; Deal, M.; Terstappen, G. Solid-Phase/Solution-Phase Combinatorial Synthesis of Neuroimmunophilin Ligands. Bioorg. Med. Chem. Lett. 2000, 10 (10), 1007-1010. doi: 10.1016/s0960-894x(00)00104-9.
  19. Meester, W. J. N.; Rutjes, F. P. J. T.; Hermkens, P. H. H.; Hiemstra, H. Synthesis of Homoallylic Amines via N-Acyliminium Ion Reactions on Solid Support. Tetrahedron Lett. 1999, 40 (8), 1601-1604. doi: 10.1016/s0040-4039(98)02655-0.
  20. Gouilleux, L.; Fehrentz, J.-A.; Winternitz, F.; Martinez, J. Solid Phase Synthesis of Chiral 3-Substituted Quinazoline-2,4-Diones. Tetrahedron Lett. 1996, 37 (39), 7031-7034. doi: 10.1016/0040-4039(96)01541-9.

L 55 Thioester Resins for Chemical Ligation (Dawson Resins)

  1. Dawson, P. E.; Kent, S. B. Synthesis of Native Proteins by Chemical Ligation. Annu. Rev. Biochem. 2000, 69 (1), 923-960. doi: 10.1146/annurev.biochem.69.1.923.
  2. Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Synthesis of Proteins by Native Chemical Ligation. Science 1994, 266 (5186), 776-779. doi: 10.1126/science.7973629.
  3. Review T. W. Muir et al., Methods in Enzymology (Ed. G. Fields) Academic Press, 266 ff.
  4. Dawson, P. E.; Churchill, M. J.; Ghadiri, M. R.; Kent, S. B. H. Modulation of Reactivity in Native Chemical Ligation through the Use of Thiol Additives. J. Am. Chem. Soc. 1997, 119 (19), 4325-4329. doi: 10.1021/ja962656r.
  5. Kent, S.B.H.; et al. Total Chemical Synthesis of Proteins: Evolution of Solid Phase Synthetic Methods Illustrated by Total Chemical Synthesis of the HIV-1 Protease, in Innovations and Perspectives in Solid Phase Synthesis, (Ed. R. Epton) Collected Papers of the Second International Symposium, 1991, Intercept Ltd., Andover, 1992, 1 22.
  6. Blanco-Canosa, J. B.; Dawson, P. E. An Efficient Fmoc-SPPS Approach for the Generation of Thioester Peptide Precursors for Use in Native Chemical Ligation. Angew. Chem. Int. Ed Engl. 2008, 47 (36), 6851-6855. doi: 10.1002/anie.200705471.
  7. Pentelute, B. L.; Barker, A. P.; Janowiak, B. E.; Kent, S. B. H.; Collier, R. J. A Semisynthesis Platform for Investigating Structure-Function Relationships in the N-Terminal Domain of the Anthrax Lethal Factor. ACS Chem. Biol. 2010, 5 (4), 359-364. doi: 10.1021/cb100003r.
  8. Mahto, S. K.; Howard, C. J.; Shimko, J. C.; Ottesen, J. J. A Reversible Protection Strategy to Improve Fmoc-SPPS of Peptide Thioesters by the N-Acylurea Approach. Chembiochem 2011, 12 (16), 2488-2494. doi: 10.1002/cbic.201100472.
  9. Gunasekera, S.; Aboye, T. L.; Madian, W. A.; El-Seedi, H. R.; Göransson, U. Making Ends Meet: Microwave-Accelerated Synthesis of Cyclic and Disulfide Rich Proteins via in Situ Thioesterification and Native Chemical Ligation. Int. J. Pept. Res. Ther. 2013, 19 (1), 43-54. doi: 10.1007/s10989-012-9331-y.
  10. Blanco-Canosa, J. B.; Nardone, B.; Albericio, F.; Dawson, P. E. Chemical protein synthesis using a second-generation N-acylurea linker for the preparation of peptide-thioester precursors. Journal of the American Chemical Society, 2015, 137(22), 7197-7209. doi: 10.1021/jacs.5b03504.
  11. Cistrone, P. A., Bird, M. J., Flood, D. T., Silvestri, A. P., Hintzen, J. C. J., Thompson, D. A., Dawson, P. E. Native Chemical Ligation of Peptides and Proteins. Curr. Protoc. Chem. Biol. 2019;11 (1):e61. doi: 10.1002/cpch.61

L 56 “Click”-Chemistry

  1. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed Engl. 2001, 40 (11), 2004-2021. doi: 10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x.
  2. Kolb, H. C.; Sharpless, K. B. The Growing Impact of Click Chemistry on Drug Discovery. Drug Discov. Today 2003, 8 (24), 1128-1137. doi: 10.1016/s1359-6446(03)02933-7.
  3. Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Cu I ‐catalyzed Alkyne-Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. European J. Org. Chem. 2006, 2006 (1), 51-68. doi: 10.1002/ejoc.200500483.
  4. Altintas, O.; Yankul, B.; Hizal, G.; Tunca, U. A3-Type Star Polymers via Click Chemistry. J. Polym. Sci. A Polym. Chem. 2006, 44 (21), 6458-6465. doi: 10.1002/pola.21728.
  5. Kantam, M. L.; Jaya, V. S.; Sreedhar, B.; Rao, M. M.; Choudary, B. M. Preparation of Alumina Supported Copper Nanoparticles and Their Application in the Synthesis of 1,2,3-Triazoles. J. Mol. Catal. A Chem. 2006, 256 (1-2), 273-277. doi: 10.1016/j.molcata.2006.04.054.
  6. Bonnet, D.; Ilien, B.; Galzi, J.-L.; Riché, S.; Antheaune, C.; Hibert, M. A Rapid and Versatile Method to Label Receptor Ligands Using “Click” Chemistry: Validation with the Muscarinic M1 Antagonist Pirenzepine. Bioconjug. Chem. 2006, 17 (6), 1618-1623. doi: 10.1021/bc060140j.

L 57 α Iodoacetamido-ω-Alkyne PEGs

  1. Weerapana, E.; Wang, C.; Simon, G. M.; Richter, F.; Khare, S.; Dillon, M. B. D.; Bachovchin, D. A.; Mowen, K.; Baker, D.; Cravatt, B. F. Quantitative Reactivity Profiling Predicts Functional Cysteines in Proteomes. Nature 2010, 468 (7325), 790-795. doi: 10.1038/nature09472.
  2. Friscourt, F.; Fahrni, C. J.; Boons, G.-J. A Fluorogenic Probe for the Catalyst-Free Detection of Azide-Tagged Molecules. J. Am. Chem. Soc. 2012, 134 (45), 18809-18815. doi: 10.1021/ja309000s.
  3. Kotoku, N.; Nakata, C.; Kawachi, T.; Sato, T.; Guo, X.-H.; Ito, A.; Sumii, Y.; Arai, M.; Kobayashi, M. Synthesis and Evaluation of Effective Photoaffinity Probe Molecule of Furospinosulin-1, a Hypoxia-Selective Growth Inhibitor. Bioorg. Med. Chem. 2014, 22 (7), 2102-2112. doi: 10.1016/j.bmc.2014.02.026.

L 58 TentaGel® XV

  1. Rapp, W.; et al. Preventing failure in difficult sequences: An improved resin matrix, its properties and application in Peptides 2012: Proceedings of the Thirty-Second European Peptide Symposium, (Eds. G. Kokotos, V. Constantinou-Kokotos, J. Matsoukas), European Peptide Society (2012), 28-29.
  2. Rawer, S.; et al. Optimization of the PNA-synthesis using different bases for Fmoc-deprotection in Peptides 2012: Proceedings of the Thirty-Second European Peptide Symposium, (Eds. G. Kokotos, V. Constantinou-Kokotos, J. Matsoukas), European Peptide Society (2012), 406-407.
  3. Pipkorn R, Rawer S, Wiessler M, Waldeck W, Koch M, Schrenk HH, Braun K. SPPS resins impact the PNA-syntheses’ improvement. Int J Med Sci. 2013; 10(3): 331-337. doi:10.7150/ijms.5374
  4. Synthesis guidelines see "General Information"

L 59 Squaric Acid Polyethylene Glycols

  1. Dingels, C.; Wurm, F.; Wagner, M.; Klok, H.-A.; Frey, H. Squaric Acid Mediated Chemoselective PEGylation of Proteins: Reactivity of Single-Step-Activated α-Amino Poly(Ethylene Glycol)s. Chemistry 2012, 18 (52), 16828-16835. doi: 10.1002/chem.201200182.
  2. Yang, Y.; He, H.-J.; Chang, H.; Yu, Y.; Yang, M.-B.; He, Y.; Fan, Z.-C.; Iyer, S. S.; Yu, P. Multivalent Oleanolic Acid Human Serum Albumin Conjugate as Nonglycosylated Neomucin for Influenza Virus Capture and Entry Inhibition. Eur. J. Med. Chem. 2018, 143, 1723-1731. doi: 10.1016/j.ejmech.2017.10.070.
  3. Westerlind, U.; Hobel, A.; Gaidzik, N.; Schmitt, E.; Kunz, H. Synthetic Vaccines Consisting of Tumor-Associated MUC1 Glycopeptide Antigens and a T-Cell Epitope for the Induction of a Highly Specific Humoral Immune Response. Angew. Chem. Int. Ed Engl. 2008, 47 (39), 7551-7556. doi: 10.1002/anie.200802102.
  4. Westerlind, U.; Hobel, A.; Gaidzig, N.; Schmitt, E.; Kunz, H. Synthetische Vakzine aus tumorassoziierten MUC1-Glycopeptidantigenen und einem T-Zellepitop für die Induzierung einer hochspezifischen humoralen Immunantwort. Angew. Chem. 2008, 120 (39), 7662-7667. doi: 10.1002/ange.200802102.

L 60 α-OPSS-ω-Biotinyl PEGs

  1. Kaiser, K.; Marek, M.; Haselgrübler, T.; Schindler, H.; Gruber, H. J. Basic Studies on Heterobifunctional Biotin-PEG Conjugates with a 3-(4-Pyridyldithio)Propionyl Marker on the Second Terminus. Bioconjug. Chem. 1997, 8 (4), 545-551. doi: 10.1021/bc970086u.

L 61 PAL Resins

  1. Albericio, F.; Barany, G. An Acid-Labile Anchoring Linkage for Solid-Phase Synthesis of C-Terminal Peptide Amides under Mild Conditions. Int. J. Pept. Protein Res. 1987, 30 (2), 206-216. doi: 10.1111/j.1399-3011.1987.tb03328.x.
  2. Bernatowicz, M. S.; Daniels, S. B.; Köster, H. A Comparison of Acid Labile Linkage Agents for the Synthesis of Peptide C-Terminal Amides. Tetrahedron Lett. 1989, 30 (35), 4645-4648. doi: 10.1016/s0040-4039(01)80764-4.
  3. Albericio, F.; Kneib-Cordonier, N.; Biancalana, S.; Gera, L.; Masada, R. I.; Hudson, D.; Barany, G. Preparation and application of the 5-(4-(9-fluorenylmethyloxycarbonyl) aminomethyl-3, 5-dimethoxyphenoxy)-valeric acid (PAL) handle for the solid-phase synthesis of C-terminal peptide amides under mild conditions. The Journal of organic chemistry, 1990, 55(12), 3730-3743. doi: 10.1021/jo00299a011.
  4. Songster, M. F.; Vágner, J.; Barany, G. Acid-labile handles for Fmoc solid-phase synthesis of peptide N-alkylamides. Letters in Peptide Science, 1996, 2(5), 265-270. doi: 10.1007/BF00142237.

L 62 TentaGel® HMPA Resins

  1. Sheppard, R. C.; Williams, B. J. Acid-Labile Resin Linkage Agents for Use in Solid Phase Peptide Synthesis. Int. J. Pept. Protein Res. 1982, 20 (5), 451-454. doi: 10.1111/j.1399-3011.1982.tb03067.x.
  2. Bayer, E. Auf dem Weg zur chemischen Synthese von Proteinen. Angew. Chem. Weinheim Bergstr. Ger. 1991, 103 (2), 117-133. doi: 10.1002/ange.19911030204.
  3. Rapp, W.; et al. Continiuos flow peptide synthesis of PSPOE-graft-copolymers in Innovation & Perspectives in Solid Phase Synthesis, 1st International Symposium; Ed, R. E., Ed.; SPCC UK Ltd, Birmingham, 1990, 205.

L 63 Polystyrene AM Ramage Resins

  1. Ramage, R.; Irving, S. L.; McInnes, C. Design of a Versatile Linker for Solid Phase Peptide Synthesis: Synthesis of C-Terminal Primary/Seconary Amides and Hydrazides. Tetrahedron Lett. 1993, 34 (41), 6599-6602. doi: 10.1016/0040-4039(93)88115-y.

L 64 Sieber Amide Resins

  1. Sieber, P. A New Acid-Labile Anchor Group for the Solid-Phase Synthesis of C-Terminal Peptide Amides by the Fmoc Method. Tetrahedron Lett. 1987, 28 (19), 2107-2110. doi: 10.1016/s0040-4039(00)96055-6.
  2. Somlai, C.; et al. Design and synthesis of 3,9-substituted xanthene derivatives: Application for solid-phase synthesis in Peptides 1992: Proceedings of the Twenty-Second European Peptide Symposium, 1992, Interlaken, Switzerland; Schneider, C. H., Eberle, A. N., Eds.; ESCOM Science: Dordrecht, Netherlands, 1993, 198.

L 65 Weinreb AM Resins

  1. Fehrentz, J.-A.; Paris, M.; Heitz, A.; Velek, J.; Liu, C.-F.; Winternitz, F.; Martinez, J. Improved Solid Phase Synthesis of C-Terminal Peptide Aldehydes. Tetrahedron Lett. 1995, 36 (43), 7871-7874. doi: 10.1016/0040-4039(95)01646-y.
  2. Dinh, T. Q.; Armstrong, R. W. Synthesis of Ketones and Aldehydes via Reactions of Weinreb-Type Amides on Solid Support. Tetrahedron Lett. 1996, 37 (8), 1161-1164. doi: 10.1016/0040-4039(95)02400-x.
  3. Tice, C. M.; Michelotti, E. L.; Mata, E. G.; Nicolàs, E.; Garcia, J.; Albericio, F. Solid Phase Synthesis of α-Acylamino-α,α-Disubstituted Ketones. Tetrahedron Lett. 2002, 43 (42), 7491-7494. doi: 10.1016/s0040-4039(02)01803-8.

L 66 α-Methoxy-ω-Silyl PEGs

  1. De Bruyker, D.; Recht, M. I.; Bhagat, A. A. S.; Torres, F. E.; Bell, A. G.; Bruce, R. H. Rapid Mixing of Sub-Microlitre Drops by Magnetic Micro-Stirring. Lab Chip 2011, 11 (19), 3313-3319. doi: 10.1039/c1lc20354a
  2. Hu, K.; Gao, Y.; Zhou, W.; Lian, J.; Li, F.; Chen, Z. Fluorinated Silicon Surfaces under Mixed Surfactants: Resistance to Nonspecific Protein Adsorption for Biosensing. Langmuir 2009, 25 (21), 12404-12407. doi: 10.1021/la901588x
  3. Wu, H.; Liu, G.; Zhang, S.; Shi, J.; Zhang, L.; Chen, Y.; Chen, F.; Chen, H. Biocompatibility, MR Imaging and Targeted Drug Delivery of a Rattle-Type Magnetic Mesoporous Silica Nanosphere System Conjugated with PEG and Cancer-Cell-Specific Ligands. J. Mater. Chem. 2011, 21 (9), 3037-3045. doi: 10.1039/c0jm02863k
  4. Portran, D.; Zoccoler, M.; Gaillard, J.; Stoppin-Mellet, V.; Neumann, E.; Arnal, I.; Martiel, J. L.; Vantard, M. MAP65/Ase1 Promote Microtubule Flexibility. Mol. Biol. Cell 2013, 24 (12), 1964-1973. doi: 10.1039/c0jm02863k
  5. Hardelauf, H.; Waide, S.; Sisnaiske, J.; Jacob, P.; Hausherr, V.; Schöbel, N.; Janasek, D.; van Thriel, C.; West, J. Micropatterning Neuronal Networks. Analyst 2014, 139 (13), 3256-3264. doi: 10.1039/C4AN00608A
  6. Prezel, E.; Stoppin-Mellet, V.; Elie, A.; Zala, N.; Denarier, E.; Serre, L.; Arnal, I. TIRF Assays for Real-Time Observation of Microtubules and Actin Coassembly: Deciphering Tau Effects on Microtubule/Actin Interplay. Methods Cell Biol. 2017, 141, 199-214. doi: 10.1039/c0jm02863k
  7. Ramirez-Rios, S.; Serre, L.; Stoppin-Mellet, V.; Prezel, E.; Vinit, A.; Courriol, E.; Fourest-Lieuvin, A.; Delaroche, J.; Denarier, E.; Arnal, I. A TIRF Microscopy Assay to Decode How Tau Regulates EB’s Tracking at Microtubule Ends. Methods Cell Biol. 2017, 141, 179-197. doi: 10.1016/bs.mcb.2017.06.013
  8. Aumeier, C.; Schaedel, L.; Gaillard, J.; John, K.; Blanchoin, L.; Théry, M. Self-Repair Promotes Microtubule Rescue. Nat. Cell Biol. 2016, 18 (10), 1054-1064. doi: 10.1038/ncb3406. doi:10.1038/ncb3406
  9. Fan, W.; Lu, N.; Shen, Z.; Tang, W.; Shen, B.; Cui, Z.; Shan, L.; Yang, Z.; Wang, Z.; Jacobson, O.; Zhou, Z.; Liu, Y.; Hu, P.; Yang, W.; Song, J.; Zhang, Y.; Zhang, L.; Khashab, N. M.; Aronova, M. A.; Lu, G.; Chen, X. Generic Synthesis of Small-Sized Hollow Mesoporous Organosilica Nanoparticles for Oxygen-Independent X-Ray-Activated Synergistic Therapy. Nat. Commun. 2019, 10 (1), 1241. doi: 10.1038/s41467-019-09158-1
  10. Ray, A.; Khalid, M. A.; Demčenko, A.; Daloglu, M.; Tseng, D.; Reboud, J.; Cooper, J. M.; Ozcan, A. Holographic Detection of Nanoparticles Using Acoustically Actuated Nanolenses. Nat. Commun. 2020, 11 (1), 171. doi: 10.1038/s41467-019-13802-1

L 67 α-Methoxy-ω-Amido Succinic Acid NHS Ester PEGs

  1. Sahoo, K.; Karumuri, S.; Hikkaduwa Koralege, R. S.; Flynn, N. H.; Hartson, S.; Liu, J.; Ramsey, J. D.; Kalkan, A. K.; Pope, C.; Ranjan, A. Molecular and Biocompatibility Characterization of Red Blood Cell Membrane Targeted and Cell-Penetrating-Peptide-Modified Polymeric Nanoparticles. Mol. Pharm. 2017, 14 (7), 2224-2235. doi: 10.1021/acs.molpharmaceut.7b00053
  2. Li, S.; Zhang, D.; Sheng, S.; Sun, H. Targeting Thyroid Cancer with Acid-Triggered Release of Doxorubicin from Silicon Dioxide Nanoparticles. Int. J. Nanomedicine 2017, 12, 5993-6003. doi: 10.2147/ijn.s137335
  3. Rackley, L.; Stewart, J. M.; Salotti, J.; Krokhotin, A.; Shah, A.; Halman, J. R.; Juneja, R.; Smollett, J.; Lee, L.; Roark, K.; Viard, M.; Tarannum, M.; Vivero-Escoto, J.; Johnson, P. F.; Dobrovolskaia, M. A.; Dokholyan, N. V.; Franco, E.; Afonin, K. A. RNA Fibers as Optimized Nanoscaffolds for SiRNA Coordination and Reduced Immunological Recognition. Adv. Funct. Mater. 2018, 28 (48), 1805959. doi: 10.1002/adfm.201805959
  4. Seaberg, J.; Flynn, N.; Cai, A.; Ramsey, J. D. Effect of Redox-Responsive DTSSP Crosslinking on Poly(l-Lysine)-Grafted-Poly(Ethylene Glycol) Nanoparticles for Delivery of Proteins. Biotechnol. Bioeng. 2020, 117 (8), 2504-2515. doi: 10.1002/bit.27369
  5. Singh, M. P.; Flynn, N. H.; Sethuraman, S. N.; Manouchehri, S.; Ritchey, J.; Liu, J.; Ramsey, J. D.; Pope, C.; Ranjan, A. Reprogramming the Rapid Clearance of Thrombolytics by Nanoparticle Encapsulation and Anchoring to Circulating Red Blood Cells. J. Control. Release 2021, 329, 148-161. doi: 10.1016/j.jconrel.2020.11.034

L 68 α-Methoxy-ω-Mercapto PEGs

  1. Soliman, M. G.; Pelaz, B.; Parak, W. J.; del Pino, P. Phase Transfer and Polymer Coating Methods toward Improving the Stability of Metallic Nanoparticles for Biological Applications. Chem. Mater. 2015, 27 (3), 990-997. doi: 10.1021/cm5043167.
  2. Ma, L.; Wang, C.; Zhang, M. Detecting Protein Adsorption and Binding Using Magnetic Nanoparticle Probes. Sens. Actuators B Chem. 2011, 160 (1), 650-655. doi: 10.1016/j.snb.2011.08.043.
  3. Yeager, D.; Karpiouk, A.; Wang, B.; Amirian, J.; Sokolov, K.; Smalling, R.; Emelianov, S. Intravascular Photoacoustic Imaging of Exogenously Labeled Atherosclerotic Plaque through Luminal Blood. J. Biomed. Opt. 2012, 17 (10), 106016. doi: 10.1117/1.JBO.17.10.106016.
  4. Joshi, P. P.; Yoon, S. J.; Hardin, W. G.; Emelianov, S.; Sokolov, K. V. Conjugation of Antibodies to Gold Nanorods through Fc Portion: Synthesis and Molecular Specific Imaging. Bioconjug. Chem. 2013, 24 (6), 878-888. doi: 10.1021/bc3004815.
  5. Bibikova, O.; Popov, A.; Skovorodkin, I.; Prilepskyi, A.; Pylaev, T.; Bykov, A.; Staroverov, S.; Bogatyrev, V.; Tuchin, V.; Kinnunen, M.; Vainio, S.; Kordas, K.; Khlebtsov, N. Plasmon-Resonant Gold Nanoparticles with Variable Morphology as Optical Labels and Drug Carriers for Cytological Research. In Novel Biophotonic Techniques and Applications II; Vitkin, A., Amelink, A., Eds.; SPIE, 2013.
  6. Mallidi, S.; Larson, T.; Tam, J.; Joshi, P. P.; Karpiouk, A.; Sokolov, K.; Emelianov, S. Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer. Nano Lett. 2009, 9 (8), 2825-2831. doi: 10.1021/nl802929u.
  7. Hoshikawa, A.; Tagami, T.; Morimura, C.; Fukushige, K.; Ozeki, T. Ranibizumab Biosimilar/Polyethyleneglycol-Conjugated Gold Nanoparticles as a Novel Drug Delivery Platform for Age-Related Macular Degeneration. J. Drug Deliv. Sci. Technol. 2017, 38, 45-50. doi: 10.1016/j.jddst.2017.01.004.
  8. Daniels, J. L.; Crawford, T. M.; Andreev, O. A.; Reshetnyak, Y. K. Synthesis and Characterization of PHLIP® Coated Gold Nanoparticles. Biochem. Biophys. Rep. 2017, 10, 62-69. doi: 10.1016/j.bbrep.2017.02.008
  9. Lee, J.; Grein-Iankovski, A.; Narayanan, S.; Leheny, R. L. Nanorod Mobility within Entangled Wormlike Micelle Solutions. Macromolecules 2017, 50 (1), 406-415. doi: 10.1021/acs.macromol.6b02091.
  10. Jung, B.-K.; Lee, Y. K.; Hong, J.; Ghandehari, H.; Yun, C.-O. Mild Hyperthermia Induced by Gold Nanorod-Mediated Plasmonic Photothermal Therapy Enhances Transduction and Replication of Oncolytic Adenoviral Gene Delivery. ACS Nano 2016, 10 (11), 10533-10543. doi: 10.1021/acsnano.6b06530.

L 69 α,ω-Bis-Mercapto PEGs

  1. Francisco, A. T.; Mancino, R. J.; Bowles, R. D.; Brunger, J. M.; Tainter, D. M.; Chen, Y.-T.; Richardson, W. J.; Guilak, F.; Setton, L. A. Injectable Laminin-Functionalized Hydrogel for Nucleus Pulposus Regeneration. Biomaterials 2013, 34 (30), 7381-7388. doi: 10.1016/j.biomaterials.2013.06.038.
  2. Donahoe, C. D.; Cohen, T. L.; Li, W.; Nguyen, P. K.; Fortner, J. D.; Mitra, R. D.; Elbert, D. L. Ultralow Protein Adsorbing Coatings from Clickable PEG Nanogel Solutions: Benefits of Attachment under Salt-Induced Phase Separation Conditions and Comparison with PEG/Albumin Nanogel Coatings. Langmuir 2013, 29 (12), 4128-4139. doi: 10.1021/la3051115
  3. Nguyen, P. K.; Snyder, C. G.; Shields, J. D.; Smith, A. W.; Elbert, D. L. Clickable Poly(Ethylene Glycol)-Microsphere-Based Cell Scaffolds. Macromol. Chem. Phys. 2013, 214 (8), 948-956. doi: 10.1002/macp.201300023.
  4. Racine, L.; Costa, G.; Bayma-Pecit, E.; Texier, I.; Auzély-Velty, R. Design of Interpenetrating Chitosan and Poly(Ethylene Glycol) Sponges for Potential Drug Delivery Applications. Carbohydr. Polym. 2017, 170, 166-175. doi: doi:10.1016/j.carbpol.2017.04.060
  5. Racine, L.; Guliyeva, A.; Wang, I.; Larreta-Garde, V.; Auzély-Velty, R.; Texier, I. Time-Controllable Lipophilic-Drug Release System Designed by Loading Lipid Nanoparticles into Polysaccharide Hydrogels. Macromol. Biosci. 2017, 17 (9), 1700045. doi: 10.1002/mabi.201700045.
  6. Han, Y.; Ma, J.; Hu, Y.; Jin, J.; Jiang, W. Effect of End-Grafted Polymer Conformation on Protein Resistance. Langmuir 2018, 34 (5), 2073-2080. doi: 10.1021/acs.langmuir.7b03930.
  7. Stewart, S. A.; Coulson, M. B.; Zhou, C.; Burke, N. A. D.; Stöver, H. D. H. Synthetic Hydrogels Formed by Thiol-Ene Crosslinking of Vinyl Sulfone-Functional Poly(Methyl Vinyl Ether-Alt-Maleic Acid) with α,ω-Dithio-Polyethyleneglycol. Soft Matter 2018, 14 (41), 8317-8324. doi: 10.1039/c8sm01066h.
  8. Kolberg, A.; Wenzel, C.; Hackenstrass, K.; Schwarzl, R.; Rüttiger, C.; Hugel, T.; Gallei, M.; Netz, R. R.; Balzer, B. N. Opposing Temperature Dependence of the Stretching Response of Single PEG and PNiPAM Polymers. J. Am. Chem. Soc. 2019, 141 (29), 11603-11613. doi: 10.1021/jacs.9b04383.
  9. Trujillo, S.; Gonzalez-Garcia, C.; Rico, P.; Reid, A.; Windmill, J.; Dalby, M. J.; Salmeron-Sanchez, M. Engineered 3D Hydrogels with Full-Length Fibronectin That Sequester and Present Growth Factors. Biomaterials 2020, 252 (120104), 120104. doi: 10.1016/j.biomaterials.2020.120104.
  10. Yoo, K. M.; Murphy, S. V.; Skardal, A. A Rapid Crosslinkable Maleimide-Modified Hyaluronic Acid and Gelatin Hydrogel Delivery System for Regenerative Applications. Gels 2021, 7 (1), 13. doi: 10.3390/gels7010013.

L 70 α-Methoxy-ω-Maleinimido PEGs

  1. Inada, H.; Procko, E.; Sotomayor, M.; Gaudet, R. Structural and Biochemical Consequences of Disease-Causing Mutations in the Ankyrin Repeat Domain of the Human TRPV4 Channel. Biochemistry 2012, 51 (31), 6195-6206. doi: 10.1021/bi300279b.
  2. Dengler, M. A.; Robin, A. Y.; Gibson, L.; Li, M. X.; Sandow, J. J.; Iyer, S.; Webb, A. I.; Westphal, D.; Dewson, G.; Adams, J. M. BAX Activation: Mutations near Its Proposed Non-Canonical BH3 Binding Site Reveal Allosteric Changes Controlling Mitochondrial Association. Cell Rep. 2019, 27 (2), 359-373.e6. doi: 10.1016/j.celrep.2019.03.040.
  3. Cioloboc, D.; Kennedy, C.; Boice, E. N.; Clark, E. R.; Kurtz, D. M., Jr. Trojan Horse for Light-Triggered Bifurcated Production of Singlet Oxygen and Fenton-Reactive Iron within Cancer Cells. Biomacromolecules 2018, 19 (1), 178-187. doi: 10.1021/acs.biomac.7b01433.
  4. Delgado, J. D.; Surmaitis, R. L.; Abou Shaheen, S.; Schlenoff, J. B. Engineering Thiolated Surfaces with Polyelectrolyte Multilayers. ACS Appl. Mater. Interfaces 2019, 11 (3), 3524-3535. doi: 10.1021/acsami.8b15514.
  5. Li, M. X.; Tan, I. K. L.; Ma, S. B.; Hockings, C.; Kratina, T.; Dengler, M. A.; Alsop, A. E.; Kluck, R. M.; Dewson, G. BAK α6 Permits Activation by BH3-Only Proteins and Homooligomerization via the Canonical Hydrophobic Groove. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (29), 7629-7634. doi: 10.1073/pnas.1702453114.
  6. Procko, E.; Berguig, G. Y.; Shen, B. W.; Song, Y.; Frayo, S.; Convertine, A. J.; Margineantu, D.; Booth, G.; Correia, B. E.; Cheng, Y.; Schief, W. R.; Hockenbery, D. M.; Press, O. W.; Stoddard, B. L.; Stayton, P. S.; Baker, D. A Computationally Designed Inhibitor of an Epstein-Barr Viral Bcl-2 Protein Induces Apoptosis in Infected Cells. Cell 2014, 157 (7), 1644-1656. doi: 10.1016/j.cell.2014.04.034.
  7. Pang, T.; Savva, C. G.; Fleming, K. G.; Struck, D. K.; Young, R. Structure of the Lethal Phage Pinhole. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (45), 18966-18971. doi: 10.1073/pnas.0907941106.
  8. Devaraneni, P. K.; Devereaux, J. J.; Valiyaveetil, F. I. In Vitro Folding of KvAP, a Voltage-Gated K+ Channel. Biochemistry 2011, 50 (48), 10442-10450. doi: 10.1021/bi2012965.
  9. Savva, C. G.; Dewey, J. S.; Deaton, J.; White, R. L.; Struck, D. K.; Holzenburg, A.; Young, R. The Holin of Bacteriophage Lambda Forms Rings with Large Diameter. Mol. Microbiol. 2008, 69 (4), 784-793. doi: 10.1111/j.1365-2958.2008.06298.x.

L 71 α-Methoxy-ω-Hydroxy PEGs

  1. Miyazaki, T.; Uchida, S.; Hatano, H.; Miyahara, Y.; Matsumoto, A.; Cabral, H. Guanidine-Phosphate Interactions Stabilize Polyion Complex Micelles Based on Flexible Catiomers to Improve MRNA Delivery. Eur. Polym. J. 2020, 140 (110028), 110028. doi: 10.1016/j.eurpolymj.2020.110028.
  2. Liao, R.; Pon, J.; Chungyoun, M.; Nance, E. Enzymatic Protection and Biocompatibility Screening of Enzyme-Loaded Polymeric Nanoparticles for Neurotherapeutic Applications. Biomaterials 2020, 257 (120238), 120238. doi: 10.1016/j.biomaterials.2020.120238.
  3. Kawanami, T.; LaBonte, L. R.; Amin, J.; Thibodeaux, S. J.; Lee, C. C.; Argintaru, O. A.; Adams, C. M. A Novel Diclofenac-Hydrogel Conjugate System for Intraarticular Sustained Release: Development of 2-Pyridylamino-Substituted 1-Phenylethanol (PAPE) and Its Derivatives as Tunable Traceless Linkers. Int. J. Pharm. 2020, 585 (119519), 119519. doi: 10.1016/j.ijpharm.2020.119519.
  4. Taladriz-Blanco, P.; Rothen-Rutishauser, B.; Petri-Fink, A.; Balog, S. Versatile Macroscale Concentration Gradients of Nanoparticles in Soft Nanocomposites. Small 2020, 16 (6), e1905192. doi: 10.1002/smll.201905192.
  5. Fauquignon, M.; Ibarboure, E.; Carlotti, S.; Brûlet, A.; Schmutz, M.; Le Meins, J.-F. Large and Giant Unilamellar Vesicle(s) Obtained by Self-Assembly of Poly(Dimethylsiloxane)-b-Poly(Ethylene Oxide) Diblock Copolymers, Membrane Properties and Preliminary Investigation of Their Ability to Form Hybrid Polymer/Lipid Vesicles. Polymers (Basel) 2019, 11 (12), 2013. doi: 10.3390/polym11122013.
  6. Le Ouay, B.; Watanabe, C.; Mochizuki, S.; Takayanagi, M.; Nagaoka, M.; Kitao, T.; Uemura, T. Selective Sorting of Polymers with Different Terminal Groups Using Metal-Organic Frameworks. Nat. Commun. 2018, 9 (1), 3635-3642. doi: 10.1038/s41467-018-06099-z

L 72 α-Methoxy-ω-Formyl PEG

  1. Zaghmi, A.; Mendez-Villuendas, E.; Greschner, A. A.; Liu, J. Y.; de Haan, H. W.; Gauthier, M. A. Mechanisms of Activity Loss for a Multi-PEGylated Protein by Experiment and Simulation. Mater. Today Chem. 2019, 12, 121-131. doi: 10.1016/j.mtchem.2018.12.007.
  2. Dilla, R. A.; Motta, C. M. M.; Xu, Y.; Zander, Z. K.; Bernard, N.; Wiener, C. G.; Vogt, B. D.; Becker, M. L. Mechanically Tunable, Human Mesenchymal Stem Cell Viable Poly(Ethylene Glycol)-Oxime Hydrogels with Invariant Precursor Composition, Concentration, and Stoichiometry. Mater. Today Chem. 2019, 11, 244-252. doi: 10.1016/j.mtchem.2018.11.003.

L 73 α-Methoxy-ω-Bromo PEGs

  1. Ramos-Tomillero, I.; Pérez-Chacon, G.; Somovilla-Crespo, B.; Sánchez-Madrid, F.; Cuevas, C.; Zapata, J. M.; Domínguez, J. M.; Rodríguez, H.; Albericio, F. From Ugi Multicomponent Reaction to Linkers for Bioconjugation. ACS Omega 2020, 5 (13), 7424-7431. doi: 10.1021/acsomega.0c00099.
  2. Xu, W.; Xu, Z.; Cai, C.; Lin, J.; Zhang, S.; Zhang, L.; Lin, S.; Yao, Y.; Qi, H. Ordered Surface Nanostructures Self-Assembled from Rod-Coil Block Copolymers on Microspheres. J. Phys. Chem. Lett. 2019, 10 (20), 6375-6381. doi: 10.1021/acs.jpclett.9b02606.
  3. Li, J.; Li, X.; Liu, H.; Ren, T.; Huang, L.; Deng, Z.; Yang, Y.; Zhong, S. GSH and Light Dual Stimuli-Responsive Supramolecular Polymer Drug Carriers for Cancer Therapy. Polym. Degrad. Stab. 2019, 168 (108956), 108956. doi: 10.1016/j.polymdegradstab.2019.108956.
  4. Arosio, P.; Basini, M.; Barbaglia, A.; Piñol, R.; Murillo, J. L.; Millán, A.; Lascialfari, A. Effect of Spin Clustering on Basic and Relaxometric Properties of Magnetic Nanoparticles. J. Nanosci. Nanotechnol. 2019, 19 (5), 2950-2962. doi: 10.1166/jnn.2019.16019.
  5. Liu, H.; Chen, J.; Li, X.; Deng, Z.; Gao, P.; Li, J.; Ren, T.; Huang, L.; Yang, Y.; Zhong, S. Amphipathic β-Cyclodextrin Nanocarriers Serve as Intelligent Delivery Platform for Anticancer Drug. Colloids Surf. B Biointerfaces 2019, 180, 429-440. doi: 10.1016/j.colsurfb.2019.05.011.
  6. Guzman-Juarez, B.; Abdelaal, A.; Kim, K.; Toader, V.; Reven, L. Fabrication of Amphiphilic Nanoparticles via Mixed Homopolymer Brushes and NMR Characterization of Surface Phase Separation. Macromolecules 2018, 51 (23), 9951-9960. doi: 10.1021/acs.macromol.8b01959.
  7. Chen, Q.; Li, S.; Feng, Z.; Wang, M.; Cai, C.; Wang, J.; Zhang, L. Poly(2-(Diethylamino)Ethyl Methacrylate)-Based, PH-Responsive, Copolymeric Mixed Micelles for Targeting Anticancer Drug Control Release. Int. J. Nanomedicine 2017, 12, 6857-6870. doi: 10.2147/IJN.S143927.
  8. Qi, T.; Chen, B.; Wang, Z.; Du, H.; Liu, D.; Yin, Q.; Liu, B.; Zhang, Q.; Wang, Y. A PH-Activatable Nanoparticle for Dual-Stage Precisely Mitochondria-Targeted Photodynamic Anticancer Therapy. Biomaterials 2019, 213 (119219), 119219. doi: 10.1016/j.biomaterials.2019.05.030.

L 74 α,ω-Bis-Amino PEGs

  1. Schlapak, R.; Pammer, P.; Armitage, D.; Zhu, R.; Hinterdorfer, P.; Vaupel, M.; Frühwirth, T.; Howorka, S. Glass Surfaces Grafted with High-Density Poly(Ethylene Glycol) as Substrates for DNA Oligonucleotide Microarrays. Langmuir 2006, 22 (1), 277-285. doi: 10.1021/la0521793.
  2. Chang, L.; Wang, C.; Han, S.; Sun, X.; Xu, F. Chemically Triggered Hydrogel Transformations through Covalent Adaptable Networks and Applications in Cell Culture. ACS Macro Lett. 2021, 10 (7), 901-906. doi: 10.1021/acsmacrolett.1c00276.
  3. Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties. Science 2009, 324 (5923), 59-63. doi: 10.1126/science.1169494.
  4. Lai, S. K.; O’Hanlon, D. E.; Harrold, S.; Man, S. T.; Wang, Y.-Y.; Cone, R.; Hanes, J. Rapid Transport of Large Polymeric Nanoparticles in Fresh Undiluted Human Mucus. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (5), 1482-1487. doi: 10.1073/pnas.0608611104.
  5. Lee, R. J.; Low, P. S. Delivery of Liposomes into Cultured KB Cells via Folate Receptor-Mediated Endocytosis. J. Biol. Chem. 1994, 269 (5), 3198-3204. doi: 10.1016/s0021-9258(17)41848-5.
  6. Liu, W.; Howarth, M.; Greytak, A. B.; Zheng, Y.; Nocera, D. G.; Ting, A. Y.; Bawendi, M. G. Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging. J. Am. Chem. Soc. 2008, 130 (4), 1274-1284. doi: 10.1021/ja076069p.
  7. Huang, P.; Lin, J.; Wang, X.; Wang, Z.; Zhang, C.; He, M.; Wang, K.; Chen, F.; Li, Z.; Shen, G.; Cui, D.; Chen, X. Light-Triggered Theranostics Based on Photosensitizer-Conjugated Carbon Dots for Simultaneous Enhanced-Fluorescence Imaging and Photodynamic Therapy. Adv. Mater. 2012, 24 (37), 5104-5110. doi: 10.1002/adma.201200650.
  8. Gombotz, W. R.; Wang, G. H.; Horbett, T. A.; Hoffman, A. S. Protein Adsorption to Poly(Ethylene Oxide) Surfaces. J. Biomed. Mater. Res. 1991, 25 (12), 1547-1562. doi: 10.1002/jbm.820251211.
  9. Holtze, C.; Rowat, A. C.; Agresti, J. J.; Hutchison, J. B.; Angilè, F. E.; Schmitz, C. H. J.; Köster, S.; Duan, H.; Humphry, K. J.; Scanga, R. A.; Johnson, J. S.; Pisignano, D.; Weitz, D. A. Biocompatible Surfactants for Water-in-Fluorocarbon Emulsions. Lab Chip 2008, 8 (10), 1632-1639. doi: 10.1039/b806706f.

L 75 α-Methoxy-ω-Amino PEGs

  1. Bugiel, M.; Fantana, H.; Bormuth, V.; Trushko, A.; Schiemann, F.; Howard, J.; Schäffer, E.; Jannasch, A. Versatile Microsphere Attachment of GFP-Labeled Motors and Other Tagged Proteins with Preserved Functionality. J. Biol. Methods 2015, 2 (4), e30. doi: 10.14440/jbm.2015.79.

L 76 α-Methoxy-ω-Amido Succinic Acid PEGs

  1. Khandhar, A. P.; Wilson, G. J.; Kaul, M. G.; Salamon, J.; Jung, C.; Krishnan, K. M. Evaluating Size-Dependent Relaxivity of PEGylated-USPIOs to Develop Gadolinium-Free T1 Contrast Agents for Vascular Imaging. J. Biomed. Mater. Res. A 2018, 106 (9), 2440-2447. doi: 10.1002/jbm.a.36438.
  2. Li, N.; Lu, X.; Fang, M.; Qiu, Z.; Chen, X.; Ren, L.; Ouyang, P.; Chen, G. PEGylated Triacontanol Substantially Enhanced the Pharmacokinetics of Triacontanol in Rats. J. Agric. Food Chem. 2018, 66 (33), 8722-8728. doi: 10.1021/acs.jafc.8b02684.
  3. Steiert, E.; Radi, L.; Fach, M.; Wich, P. R. Protein-Based Nanoparticles for the Delivery of Enzymes with Antibacterial Activity. Macromol. Rapid Commun. 2018, 39 (14), e1800186. doi: 10.1002/marc.201800186.
  4. Macho-Fernandez, E.; Chekkat, N.; Ehret, C.; Thomann, J.-S.; De Giorgi, M.; Spanedda, M. V.; Bourel-Bonnet, L.; Betbeder, D.; Heurtault, B.; Faveeuw, C.; Fournel, S.; Frisch, B.; Trottein, F. Solubilization of α-Galactosylceramide in Aqueous Medium: Impact on Natural Killer T Cell Activation and Antitumor Responses. Int. J. Pharm. 2017, 530 (1-2), 354-363. doi: 10.1016/j.ijpharm.2017.07.054.
  5. He, C.; Yang, Q.; Tan, L.; Liu, B.; Zhu, Z.; Gong, B.; Shen, Y.-M.; Shao, Z. Design and Synthesis of Redox and Oxidative Dual Responsive Block Copolymer Micelles for Intracellular Drug Delivery. Eur. Polym. J. 2016, 85, 38-52. doi: 10.1016/j.eurpolymj.2016.09.047.
  6. Zoetebier, B.; Sohrabi, A.; Lou, B.; Hempenius, M. A.; Hennink, W. E.; Vancso, G. J. PEG Stabilized DNA - Poly(Ferrocenylsilane) Polyplexes for Gene Delivery. Chem. Commun. (Camb.) 2016, 52 (49), 7707-7710. doi: 10.1039/c6cc02733d.

L 77 α,ω-Bis-Amido Succinic Acid NHS Ester PEGs

  1. Sherck, N.; Webber, T.; Brown, D. R.; Keller, T.; Barry, M.; DeStefano, A.; Jiao, S.; Segalman, R. A.; Fredrickson, G. H.; Shell, M. S.; Han, S. End-to-End Distance Probability Distributions of Dilute Poly(Ethylene Oxide) in Aqueous Solution. J. Am. Chem. Soc. 2020, 142 (46), 19631-19641. doi: 10.1021/jacs.0c08709
  2. Ramirez Caballero, S. S.; Ferri-Angulo, D.; Debret, R.; Granier, F.; Marie, S.; Lefèvre, F.-X.; Bouler, J.-M.; Despas, C.; Sohier, J.; Bujoli, B. Combination of Biocompatible Hydrogel Precursors to Apatitic Calcium Phosphate Cements (CPCs): Influence of the in situ Hydrogel Reticulation on the CPC Properties. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109 (1), 102-116. doi: 10.1002/jbm.b.34685
  3. Natfji, A. A.; Nikitin, D. O.; Semina, I. I.; Moustafine, R. I.; Khutoryanskiy, V. V.; Lin, H.; Stephens, G. J.; Watson, K. A.; Osborn, H. M. I.; Greco, F. Conjugation of Haloperidol to PEG Allows Peripheral Localisation of Haloperidol and Eliminates CNS Extrapyramidal Effects. J. Control. Release 2020, 322, 227-235. doi: 10.1016/j.jconrel.2020.02.037
  4. Gabriel, M.; Niederer, K.; Becker, M.; Raynaud, C. M.; Vahl, C.-F.; Frey, H. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach. Bioconjug. Chem. 2016, 27 (5), 1216-1221. doi: 10.1021/acs.bioconjchem.6b00047
  5. Suttenun, N.; Punyamoonwongsa, P. A New Crosslinker for the Preparation of Silk Fibroin Hydrogels. Macromol. Symp. 2015, 354 (1), 273-279. doi: 10.1002/masy.201400097
  6. Villaverde, G.; Baeza, A.; Melen, G. J.; Alfranca, A.; Ramirez, M.; Vallet-Regí, M. A New Targeting Agent for the Selective Drug Delivery of Nanocarriers for Treating Neuroblastoma. J. Mater. Chem. B Mater. Biol. Med. 2015, 3 (24), 4831-4842. doi: 10.1039/c5tb00287g
  7. Heller, M.; Kämmerer, P. W.; Al-Nawas, B.; Luszpinski, M.-A.; Förch, R.; Brieger, J. The Effect of Extracellular Matrix Proteins on the Cellular Response of HUVECS and HOBS after Covalent Immobilization onto Titanium. J. Biomed. Mater. Res. A 2015, 103 (6), 2035-2044. doi: 10.1002/jbm.a.35340

L 78 α-Biotinyl-ω-Mercapto PEGs

  1. Innes-Gold, S. N.; Morgan, I. L.; Saleh, O. A. Surface-Induced Effects in Fluctuation-Based Measurements of Single-Polymer Elasticity: A Direct Probe of the Radius of Gyration. J. Chem. Phys. 2018, 148 (12), 123314. doi: 10.1063/1.5009049
  2. Wang, Y.; van Asdonk, K.; Zijlstra, P. A Robust and General Approach to Quantitatively Conjugate Enzymes to Plasmonic Nanoparticles. Langmuir 2019, 35 (41), 13356-13363.
  3. Gao, S.; Chen, S.; Lu, Q. Real-Time Profiling of Anti-(Epithelial Cell Adhesion Molecule)-Based Immune Capture from Molecules to Cells Using Multiparameter Surface Plasmon Resonance. Langmuir 2019, 35 (4), 1040-1046. doi: 10.1021/acs.langmuir.8b03898
  4. Misbah, I.; Zhao, F.; Shih, W.-C. Symmetry Breaking-Induced Plasmonic Mode Splitting in Coupled Gold-Silver Alloy Nanodisk Array for Ultrasensitive RGB Colorimetric Biosensing. ACS Appl. Mater. Interfaces 2019, 11 (2), 2273-2281. doi: 10.1021/acsami.8b17876
  5. Yang, Y.; Kannisto, E.; Yu, G.; Reid, M. E.; Patnaik, S. K.; Wu, Y. An Immuno-Biochip Selectively Captures Tumor-Derived Exosomes and Detects Exosomal RNAs for Cancer Diagnosis. ACS Appl. Mater. Interfaces 2018, 10 (50), 43375-43386. doi: 10.1021/acsami.8b13971
  6. Heo, D. N.; Yang, D. H.; Moon, H.-J.; Lee, J. B.; Bae, M. S.; Lee, S. C.; Lee, W. J.; Sun, I.-C.; Kwon, I. K. Gold Nanoparticles Surface-Functionalized with Paclitaxel Drug and Biotin Receptor as Theranostic Agents for Cancer Therapy. Biomaterials 2012, 33 (3), 856-866. doi: 10.1016/j.biomaterials.2011.09.064
  7. Zhang, P.; Chen, L.; Xu, T.; Liu, H.; Liu, X.; Meng, J.; Yang, G.; Jiang, L.; Wang, S. Programmable Fractal Nanostructured Interfaces for Specific Recognition and Electrochemical Release of Cancer Cells. Adv. Mater. 2013, 25 (26), 3566-3570. doi:: 10.1002/adma.201300888
  8. Jonsson, M. P.; Dahlin, A. B.; Feuz, L.; Petronis, S.; Höök, F. Locally Functionalized Short-Range Ordered Nanoplasmonic Pores for Bioanalytical Sensing. Anal. Chem. 2010, 82 (5), 2087-2094. doi: 10.1021/ac902925e
  9. Feuz, L.; Jonsson, M. P.; Höök, F. Material-Selective Surface Chemistry for Nanoplasmonic Sensors: Optimizing Sensitivity and Controlling Binding to Local Hot Spots. Nano Lett. 2012, 12 (2), 873-879. doi: 10.1021/nl203917e
  10. Li, J.; Zhu, Z.; Zhu, B.; Ma, Y.; Lin, B.; Liu, R.; Song, Y.; Lin, H.; Tu, S.; Yang, C. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging. Anal. Chem. 2016, 88 (15), 7828-7836. doi: 10.1021/acs.analchem.6b01867

L 79 α-Methoxy-ω-OPSS PEGs

  1. Lu, H. B.; Campbell, C. T.; Castner, D. G. Attachment of Functionalized Poly(Ethylene Glycol) Films to Gold Surfaces. Langmuir 2000, 16 (4), 1711-1718. doi: 10.1021/la990221m
  2. Movileanu, L.; Bayley, H. Partitioning of a Polymer into a Nanoscopic Protein Pore Obeys a Simple Scaling Law. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (18), 10137-10141. doi: 10.1073/pnas.181089798
  3. Movileanu, L.; Cheley, S.; Howorka, S.; Braha, O.; Bayley, H. Location of a Constriction in the Lumen of a Transmembrane Pore by Targeted Covalent Attachment of Polymer Molecules. J. Gen. Physiol. 2001, 117 (3), 239-252. doi: 10.1085/jgp.117.3.239
  4. Natarajan, A.; Xiong, C.-Y.; Albrecht, H.; DeNardo, G. L.; DeNardo, S. J. Characterization of Site-Specific ScFv PEGylation for Tumor-Targeting Pharmaceuticals. Bioconjug. Chem. 2005, 16 (1), 113-121. doi: 10.1021/bc0498121
  5. Singha, S.; Shao, K.; Yang, Y.; Clemente-Casares, X.; Solé, P.; Clemente, A.; Blanco, J.; Dai, Q.; Song, F.; Liu, S. W.; Yamanouchi, J.; Umeshappa, C. S.; Nanjundappa, R. H.; Detampel, P.; Amrein, M.; Fandos, C.; Tanguay, R.; Newbigging, S.; Serra, P.; Khadra, A.; Chan, W. C. W.; Santamaria, P. Peptide-MHC-Based Nanomedicines for Autoimmunity Function as T-Cell Receptor Microclustering Devices. Nat. Nanotechnol. 2017, 12 (7), 701-710. doi: 10.1038/nnano.2017.56
  6. Mahendran, K. R.; Niitsu, A.; Kong, L.; Thomson, A. R.; Sessions, R. B.; Woolfson, D. N.; Bayley, H. A Monodisperse Transmembrane α-Helical Peptide Barrel. Nat. Chem. 2017, 9 (5), 411-419. doi: 10.1038/nchem.2647.
  7. Wang, X.; Li, D.; Yang, F.; Shen, H.; Li, Z.; Wu, D. Controlled Cross-Linking Strategy: From Hybrid Hydrogels to Nanoparticle Macroscopic Aggregates. Polym. Chem. 2013, 4 (17), 4596. doi: 10.1039/c3py00811h

L 80 α,ω-Bis-Formyl PEGs (PEG Dialdehydes)

  1. Luo, Y.; Kirker, K. R.; Prestwich, G. D. Cross-Linked Hyaluronic Acid Hydrogel Films: New Biomaterials for Drug Delivery. J. Control. Release 2000, 69 (1), 169-184. doi: 10.1016/s0168-3659(00)00300-x
  2. Mahendran, K. R.; Niitsu, A.; Kong, L.; Thomson, A. R.; Sessions, R. B.; Woolfson, D. N.; Bayley, H. A Monodisperse Transmembrane α-Helical Peptide Barrel. Nat. Chem. 2017, 9 (5), 411-419. doi: 10.1038/nchem.2647.
  3. Kirker, K. R.; Luo, Y.; Nielson, J. H.; Shelby, J.; Prestwich, G. D. Glycosaminoglycan Hydrogel Films as Bio-Interactive Dressings for Wound Healing. Biomaterials 2002, 23 (17), 3661-3671. doi: 10.1016/s0142-9612(02)00100-x
  4. Grinstaff, M. W. Designing Hydrogel Adhesives for Corneal Wound Repair. Biomaterials 2007, 28 (35), 5205-5214. doi: 10.1016/j.biomaterials.2007.08.041
  5. Wathier, M.; Jung, P. J.; Carnahan, M. A.; Kim, T.; Grinstaff, M. W. Dendritic Macromers as in Situ Polymerizing Biomaterials for Securing Cataract Incisions. J. Am. Chem. Soc. 2004, 126 (40), 12744-12745. doi: 10.1021/ja045870l
  6. Liu, Y.; Lee, J.; Mansfield, K. M.; Ko, J. H.; Sallam, S.; Wesdemiotis, C.; Maynard, H. D. Trehalose Glycopolymer Enhances Both Solution Stability and Pharmacokinetics of a Therapeutic Protein. Bioconjug. Chem. 2017, 28 (3), 836-845. doi: 10.1021/acs.bioconjchem.6b00659
  7. Oelker, A. M.; Berlin, J. A.; Wathier, M.; Grinstaff, M. W. Synthesis and Characterization of Dendron Cross-Linked PEG Hydrogels as Corneal Adhesives. Biomacromolecules 2011, 12 (5), 1658-1665. doi: 10.1021/bm200039s

L 81 α,ω-Bis-Bromo PEGs

  1. Haghighi, A. J.; Mokhtari, J.; Karimian, K. N-PEGylated Thiazolium Salt: A Green and Reusable Homogenous Organocatalyst for the Synthesis of Benzoins and Acyloins. Catal. Letters 2021, 151 (6), 1646-1652. doi: 10.1007/s10562-020-03417-3
  2. Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N.; Gao, J.; Yin, Z.-S. Highly Efficient Conversion of Carbon Dioxide Catalyzed by Polyethylene Glycol-Functionalized Basic Ionic Liquids. Green Chem. 2012, 14 (2), 519. doi: 10.1039/c2gc16039k
  3. Du, Y.; Wu, Y.; Liu, A.-H.; He, L.-N. Quaternary Ammonium Bromide Functionalized Polyethylene Glycol: A Highly Efficient and Recyclable Catalyst for Selective Synthesis of 5-Aryl-2-Oxazolidinones from Carbon Dioxide and Aziridines under Solvent-Free Conditions. J. Org. Chem. 2008, 73 (12), 4709-4712. doi: 10.1021/jo800269v
  4. Binder, W. H.; Petraru, L.; Roth, T.; Groh, P. W.; Pálfi, V.; Keki, S.; Ivan, B. Magnetic and Temperature-Sensitive Release Gels from Supramolecular Polymers. Adv. Funct. Mater. 2007, 17 (8), 1317-1326. doi: 10.1002/adfm.200601084
  5. Dyer, J.; Vayro, S.; King, T. P.; Shirazi-Beechey, S. P. Glucose Sensing in the Intestinal Epithelium. Eur. J. Biochem. 2003, 270 (16), 3377-3388. doi: 10.1046/j.1432-1033.2003.03721.x
  6. Ito, K.; Nishina, N.; Ohno, H. High Lithium Ionic Conductivity of Poly(Ethylene Oxide)s Having Sulfonate Groups on Their Chain Ends. J. Mater. Chem. 1997, 7 (8), 1357-1362. doi: 10.1039/a700583k
  7. Patil, Y. P.; Tambade, P. J.; Jagtap, S. R.; Bhanage, B. M. Synthesis of 2-Oxazolidinones/2-Imidazolidinones from CO2, Different Epoxides and Amino Alcohols/Alkylene Diamines Using Br−Ph3+P-PEG600-P+Ph3Br− as Homogenous Recyclable Catalyst. J. Mol. Catal. A Chem. 2008, 289 (1-2), 14-21. doi: 10.1016/j.molcata.2008.03.019
  8. Cheng, C.-X.; Huang, Y.; Tang, R.-P.; Chen, E.-Q.; Xi, F. Molecular Architecture Effect on Self-Assembled Nanostructures of a Linear-Dendritic Rod Triblock Copolymer in Solution. Macromolecules 2005, 38 (8), 3044-3047. doi: 10.1021/ma050196t
  9. Sheng, S.-R.; Wang, Q.-Y.; Ding, Y.; Liu, X.-L.; Cai, M.-Z. Synthesis of Bis(Indolyl)Methanes Using Recyclable PEG-Supported Sulfonic Acid as Catalyst. Catal. Letters 2009, 128 (3-4), 418-422. doi: 10.1007/s10562-008-9767-z

L 82 α,ω-Bis-Amido Succinic Acid PEGs (Bis-carboxy PEGs)

  1. Xu, C.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S. Au-Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes. Angew. Chem. Int. Ed Engl. 2008, 47 (1), 173-176. doi: 10.1002/anie.200704392
  2. Khandare, J. J.; Jayant, S.; Singh, A.; Chandna, P.; Wang, Y.; Vorsa, N.; Minko, T. Dendrimer versus Linear Conjugate: Influence of Polymeric Architecture on the Delivery and Anticancer Effect of Paclitaxel. Bioconjug. Chem. 2006, 17 (6), 1464-1472. doi: 10.1021/bc060240p
  3. Rao, L.; Bu, L.-L.; Xu, J.-H.; Cai, B.; Yu, G.-T.; Yu, X.; He, Z.; Huang, Q.; Li, A.; Guo, S.-S.; Zhang, W.-F.; Liu, W.; Sun, Z.-J.; Wang, H.; Wang, T.-H.; Zhao, X.-Z. Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance. Small 2015, 11 (46), 6225-6236. doi: 10.1002/smll.201502388
  4. Chien, Y.-H.; Chou, Y.-L.; Wang, S.-W.; Hung, S.-T.; Liau, M.-C.; Chao, Y.-J.; Su, C.-H.; Yeh, C.-S. Near-Infrared Light Photocontrolled Targeting, Bioimaging, and Chemotherapy with Caged Upconversion Nanoparticles in Vitro and in Vivo. ACS Nano 2013, 7 (10), 8516-8528. doi: 10.1021/nn402399m
  5. Faure, A.-C.; Dufort, S.; Josserand, V.; Perriat, P.; Coll, J.-L.; Roux, S.; Tillement, O. Control of the in Vivo Biodistribution of Hybrid Nanoparticles with Different Poly(Ethylene Glycol) Coatings. Small 2009, 5 (22), 2565-2575. doi: 10.1002/smll.200900563
  6. Khandare, J. J.; Chandna, P.; Wang, Y.; Pozharov, V. P.; Minko, T. Novel Polymeric Prodrug with Multivalent Components for Cancer Therapy. J. Pharmacol. Exp. Ther. 2006, 317 (3), 929-937.
  7. Xu, G.; Chen, X.; Hu, J.; Yang, P.; Yang, D.; Wei, L. Immobilization of Trypsin on Graphene Oxide for Microwave-Assisted on-Plate Proteolysis Combined with MALDI-MS Analysis. Analyst 2012, 137 (12), 2757-2761. doi: 10.1039/c2an35093a

L 83 α,ω-Bis-Pyridyldithio PEGs (OPSS PEGs)

  1. Lu, H. B.; Campbell, C. T.; Castner, D. G. Attachment of Functionalized Poly(Ethylene Glycol) Films to Gold Surfaces. Langmuir 2000, 16 (4), 1711-1718. doi: 10.1021/la990221m
  2. Chong, S.-F.; Chandrawati, R.; Städler, B.; Park, J.; Cho, J.; Wang, Y.; Jia, Z.; Bulmus, V.; Davis, T. P.; Zelikin, A. N.; Caruso, F. Stabilization of Polymer-Hydrogel Capsules via Thiol-Disulfide Exchange. Small 2009, 5 (22), 2601-2610. (no doi)
  3. Natarajan, A.; Xiong, C.-Y.; Albrecht, H.; DeNardo, G. L.; DeNardo, S. J. Characterization of Site-Specific ScFv PEGylation for Tumor-Targeting Pharmaceuticals. Bioconjug. Chem. 2005, 16 (1), 113-121. doi: 10.1021/bc0498121
  4. Liu, J.; Gu, C.; Cabigas, E. B.; Pendergrass, K. D.; Brown, M. E.; Luo, Y.; Davis, M. E. Functionalized Dendrimer-Based Delivery of Angiotensin Type 1 Receptor SiRNA for Preserving Cardiac Function Following Infarction. Biomaterials 2013, 34 (14), 3729-3736. doi: 10.1016/j.biomaterials.2013.02.008
  5. Dam, H. H.; Caruso, F. Construction and Degradation of Polyrotaxane Multilayers. Adv. Mater. 2011, 23 (27), 3026-3029. doi: 10.1002/adma.201101210
  6. Tardy, B. L.; Dam, H. H.; Kamphuis, M. M. J.; Richardson, J. J.; Caruso, F. Self-Assembled Stimuli-Responsive Polyrotaxane Core-Shell Particles. Biomacromolecules 2014, 15 (1), 53-59. doi: 10.1021/bm401244a

L 84 α,ω-Bis-Maleinimido PEGs

  1. Nimmo, C. M.; Owen, S. C.; Shoichet, M. S. Diels-Alder Click Cross-Linked Hyaluronic Acid Hydrogels for Tissue Engineering. Biomacromolecules 2011, 12 (3), 824-830. doi: 10.1021/bm101446k
  2. Shao, C.; Wang, M.; Chang, H.; Xu, F.; Yang, J. A Self-Healing Cellulose Nanocrystal-Poly(Ethylene Glycol) Nanocomposite Hydrogel via Diels-Alder Click Reaction. ACS Sustain. Chem. Eng. 2017, 5 (7), 6167-6174. doi: 10.1021/acssuschemeng.7b01060
  3. Jing, P.; Rudra, J. S.; Herr, A. B.; Collier, J. H. Self-Assembling Peptide-Polymer Hydrogels Designed from the Coiled Coil Region of Fibrin. Biomacromolecules 2008, 9 (9), 2438-2446. doi: 10.1021/bm800459v
  4. Owen, S. C.; Fisher, S. A.; Tam, R. Y.; Nimmo, C. M.; Shoichet, M. S. Hyaluronic Acid Click Hydrogels Emulate the Extracellular Matrix. Langmuir 2013, 29 (24), 7393-7400. doi: 10.1021/la305000w
  5. Lee, B.-S.; Fujita, M.; Khazenzon, N. M.; Wawrowsky, K. A.; Wachsmann-Hogiu, S.; Farkas, D. L.; Black, K. L.; Ljubimova, J. Y.; Holler, E. Polycefin, a New Prototype of a Multifunctional Nanoconjugate Based on Poly(Beta-L-Malic Acid) for Drug Delivery. Bioconjug. Chem. 2006, 17 (2), 317-326. doi: 10.1021/bc0502457
  6. Pakulska, M. M.; Vulic, K.; Tam, R. Y.; Shoichet, M. S. Hybrid Crosslinked Methylcellulose Hydrogel: A Predictable and Tunable Platform for Local Drug Delivery. Adv. Mater. 2015, 27 (34), 5002-5008. doi: 10.1002/adma.201502767
  7. Smith, L. J.; Taimoory, S. M.; Tam, R. Y.; Baker, A. E. G.; Binth Mohammad, N.; Trant, J. F.; Shoichet, M. S. Diels-Alder Click-Cross-Linked Hydrogels with Increased Reactivity Enable 3D Cell Encapsulation. Biomacromolecules 2018, 19 (3), 926-935. doi: 10.1021/acs.biomac.7b01715
  8. Gaspar, V. M.; Costa, E. C.; Queiroz, J. A.; Pichon, C.; Sousa, F.; Correia, I. J. Folate-Targeted Multifunctional Amino Acid-Chitosan Nanoparticles for Improved Cancer Therapy. Pharm. Res. 2015, 32 (2), 562-577. doi: 10.1007/s11095-014-1486-0
  9. Fu, Y.; Kao, W. J. In Situ Forming Poly(Ethylene Glycol)-Based Hydrogels via Thiol-Maleimide Michael-Type Addition. J. Biomed. Mater. Res. A 2011, 98 (2), 201-211. doi: 10.1002/jbm.a.33106

L 85 α-Silyl-ω-Azido PEGs

  1. Randriantsilefisoa, R.; Cuellar-Camacho, J. L.; Chowdhury, M. S.; Dey, P.; Schedler, U.; Haag, R. Highly Sensitive Detection of Antibodies in a Soft Bioactive Three-Dimensional Bioorthogonal Hydrogel. J. Mater. Chem. B Mater. Biol. Med. 2019, 7 (20), 3220-3231. doi: 10.1039/c9tb00234k
  2. Herrmann, A.; Kaufmann, L.; Dey, P.; Haag, R.; Schedler, U. Bioorthogonal in Situ Hydrogels Based on Polyether Polyols for New Biosensor Materials with High Sensitivity. ACS Appl. Mater. Interfaces 2018, 10 (13), 11382-11390. doi: 10.1021/acsami.8b01860
  3. Chen, F.; Wegner, S. V. Blue Light Switchable Bacterial Adhesion as a Key Step toward the Design of Biofilms. ACS Synth. Biol. 2017, 6 (12), 2170-2174. doi: 10.1021/acssynbio.7b00197

L 86 α-Silyl-ω-Biotinyl PEGs

  1. Kinz-Thompson, C. D.; Palma, M.; Pulukkunat, D. K.; Chenet, D.; Hone, J.; Wind, S. J.; Gonzalez, R. L., Jr. Robustly Passivated, Gold Nanoaperture Arrays for Single-Molecule Fluorescence Microscopy. ACS Nano 2013, 7 (9), 8158-8166. doi: 10.1021/nn403447s
  2. Park, K. R.; Bryers, J. D. Effect of Macrophage Classical (M1) Activation on Implant-Adherent Macrophage Interactions with Staphylococcus Epidermidis: A Murine in Vitro Model System. J. Biomed. Mater. Res. A 2012, 100 (8), 2045-2053. doi: 10.1002/jbm.a.34087
  3. Portran, D.; Zoccoler, M.; Gaillard, J.; Stoppin-Mellet, V.; Neumann, E.; Arnal, I.; Martiel, J. L.; Vantard, M. MAP65/Ase1 Promote Microtubule Flexibility. Mol. Biol. Cell 2013, 24 (12), 1964-1973. doi: 10.1091/mbc.E13-03-0141
  4. Fassier, C.; Fréal, A.; Gasmi, L.; Delphin, C.; Ten Martin, D.; De Gois, S.; Tambalo, M.; Bosc, C.; Mailly, P.; Revenu, C.; Peris, L.; Bolte, S.; Schneider-Maunoury, S.; Houart, C.; Nothias, F.; Larcher, J.-C.; Andrieux, A.; Hazan, J. Motor Axon Navigation Relies on Fidgetin-like 1-Driven Microtubule plus End Dynamics. J. Cell Biol. 2018, 217 (5), 1719-1738. doi: 10.1083/jcb.201604108
  5. Ray, A.; Khalid, M. A.; Demčenko, A.; Daloglu, M.; Tseng, D.; Reboud, J.; Cooper, J. M.; Ozcan, A. Holographic Detection of Nanoparticles Using Acoustically Actuated Nanolenses. Nat. Commun. 2020, 11 (1), 171. doi: 10.1038/s41467-019-13802-1

L 87 α-Silyl-ω-Alkyne PEGs

  1. Lin, W.; Junjian, C.; Chengzhi, C.; Lin, S.; Sa, L.; Li, R.; Yingjun, W. Multi-Biofunctionalization of a Titanium Surface with a Mixture of Peptides to Achieve Excellent Antimicrobial Activity and Biocompatibility. J. Mater. Chem. B Mater. Biol. Med. 2015, 3 (1), 30-33. doi: 10.1039/c4tb01318b
  2. Schenk, F. C.; Boehm, H.; Spatz, J. P.; Wegner, S. V. Dual-Functionalized Nanostructured Biointerfaces by Click Chemistry. Langmuir 2014, 30 (23), 6897-6905. doi: 10.1021/la500766t
  3. Wegner, S. V.; Sentürk, O. I.; Spatz, J. P. Photocleavable Linker for the Patterning of Bioactive Molecules. Sci. Rep. 2015, 5 (1), 18309. doi: 10.1038/srep18309
  4. Wegner, S. V.; Schenk, F. C.; Spatz, J. P. Cobalt(III)-Mediated Permanent and Stable Immobilization of Histidine-Tagged Proteins on NTA-Functionalized Surfaces. Chemistry 2016, 22 (9), 3156-3162. doi: 10.1002/chem.201504465

L 88 α-Tritylthio-ω-NHS PEGs

  1. Polyak, D.; Ryppa, C.; Eldar-Boock, A.; Ofek, P.; Many, A.; Licha, K.; Kratz, F.; Satchi-Fainaro, R. Development of PEGylated Doxorubicin-E-[c(RGDfK)2 ] Conjugate for Integrin-Targeted Cancer Therapy. Polym. Adv. Technol. 2011, 22 (1), 103-113. doi: 10.1002/pat.1731
  2. Eldar-Boock, A.; Blau, R.; Ryppa, C.; Baabur-Cohen, H.; Many, A.; Vicent, M. J.; Kratz, F.; Sanchis, J.; Satchi-Fainaro, R. Integrin-Targeted Nano-Sized Polymeric Systems for Paclitaxel Conjugation: A Comparative Study. J. Drug Target. 2017, 25 (9-10), 829-844. doi: 10.1080/1061186X.2017.1358727

L 89 α-Mercapto-ω-Carboxy PEGs

  1. Kantner, K.; Rejman, J.; Kraft, K. V. L.; Soliman, M. G.; Zyuzin, M. V.; Escudero, A.; del Pino, P.; Parak, W. J. Laterally and Temporally Controlled Intracellular Staining by Light-Triggered Release of Encapsulated Fluorescent Markers. Chemistry 2018, 24 (9), 2098-2102. doi: 10.1002/chem.201706135
  2. Conde, J.; Oliva, N.; Zhang, Y.; Artzi, N. Local Triple-Combination Therapy Results in Tumour Regression and Prevents Recurrence in a Colon Cancer Model. Nat. Mater. 2016, 15 (10), 1128-1138. doi: 10.1038/nmat4707
  3. Bao, C.; Beziere, N.; del Pino, P.; Pelaz, B.; Estrada, G.; Tian, F.; Ntziachristos, V.; de la Fuente, J. M.; Cui, D. Gold Nanoprisms as Optoacoustic Signal Nanoamplifiers for in Vivo Bioimaging of Gastrointestinal Cancers. Small 2013, 9 (1), 68-74. doi: 10.1002/smll.201201779
  4. Kong, K. V.; Lam, Z.; Goh, W. D.; Leong, W. K.; Olivo, M. Metal Carbonyl-Gold Nanoparticle Conjugates for Live-Cell SERS Imaging. Angew. Chem. Int. Ed Engl. 2012, 51 (39), 9796-9799. doi: 10.1002/anie.201204349
  5. Conde, J.; Oliva, N.; Artzi, N. Implantable Hydrogel Embedded Dark-Gold Nanoswitch as a Theranostic Probe to Sense and Overcome Cancer Multidrug Resistance. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (11), E1278-87. doi: 10.1073/pnas.1421229112
  6. Grasso, L.; Wyss, R.; Weidenauer, L.; Thampi, A.; Demurtas, D.; Prudent, M.; Lion, N.; Vogel, H. Molecular Screening of Cancer-Derived Exosomes by Surface Plasmon Resonance Spectroscopy. Anal. Bioanal. Chem. 2015, 407 (18), 5425-5432. doi: 10.1007/s00216-015-8711-5
  7. MacLaughlin, C. M.; Mullaithilaga, N.; Yang, G.; Ip, S. Y.; Wang, C.; Walker, G. C. Surface-Enhanced Raman Scattering Dye-Labeled Au Nanoparticles for Triplexed Detection of Leukemia and Lymphoma Cells and SERS Flow Cytometry. Langmuir 2013, 29 (6), 1908-1919. doi: 10.1021/la303931c
  8. Hosu, O.; Ravalli, A.; Lo Piccolo, G. M.; Cristea, C.; Sandulescu, R.; Marrazza, G. Smartphone-Based Immunosensor for CA125 Detection. Talanta 2017, 166, 234-240. doi: 10.1016/j.talanta.2017.01.073
  9. Nagy-Simon, T.; Tatar, A.-S.; Craciun, A.-M.; Vulpoi, A.; Jurj, M.-A.; Florea, A.; Tomuleasa, C.; Berindan-Neagoe, I.; Astilean, S.; Boca, S. Antibody Conjugated, Raman Tagged Hollow Gold-Silver Nanospheres for Specific Targeting and Multimodal Dark-Field/SERS/Two Photon-FLIM Imaging of CD19(+) B Lymphoblasts. ACS Appl. Mater. Interfaces 2017, 9 (25), 21155-21168. doi: 10.1021/acsami.7b05145
  10. Hauptstein, S.; Bonengel, S.; Griessinger, J.; Bernkop-Schnürch, A. Synthesis and Characterization of PH Tolerant and Mucoadhesive (Thiol-Polyethylene Glycol) Chitosan Graft Polymer for Drug Delivery. J. Pharm. Sci. 2014, 103 (2), 594-601. doi: 10.1002/jps.23832

L 90 MAPs

  1. Vepřek, P.; Ježek, J. Peptide and Glycopeptide Dendrimers. Part I. J. Pept. Sci. 1999, 5 (1), 5-23. doi: 10.1002/(sici)1099-1387(199901)5:1<5::aid-psc178>3.0.co;2-r.
  2. Veprek, P.; Jezek, J. Peptide and Glycopeptide Dendrimers. Part II. J. Pept. Sci. 1999, 5 (5), 203-220. doi: 10.1002/(SICI)1099-1387(199905)5:5<203::AID-PSC181>3.0.CO;2-N.
  3. Nardelli, B.; et al. A chemically defined synthetic vaccine model for HIV-1. J. Immunol. 1992, 148 (3), 914-920.

L 91 α-Mercapto-ω-Amino PEGs

  1. Fernandes, R.; Smyth, N. R.; Muskens, O. L.; Nitti, S.; Heuer-Jungemann, A.; Ardern-Jones, M. R.; Kanaras, A. G. Interactions of Skin with Gold Nanoparticles of Different Surface Charge, Shape, and Functionality. Small 2015, 11 (6), 713-721. doi: 10.1002/smll.201401913
  2. Ma, N.; Liu, P.; He, N.; Gu, N.; Wu, F.-G.; Chen, Z. Action of Gold Nanospikes-Based Nanoradiosensitizers: Cellular Internalization, Radiotherapy, and Autophagy. ACS Appl. Mater. Interfaces 2017, 9 (37), 31526-31542. doi: 10.1021/acsami.7b09599
  3. Bogliotti, N.; Oberleitner, B.; Di-Cicco, A.; Schmidt, F.; Florent, J.-C.; Semetey, V. Optimizing the Formation of Biocompatible Gold Nanorods for Cancer Research: Functionalization, Stabilization and Purification. J. Colloid Interface Sci. 2011, 357 (1), 75-81. doi: 10.1016/j.jcis.2011.01.053
  4. Maji, S. K.; Yu, S.; Chung, K.; Sekkarapatti Ramasamy, M.; Lim, J. W.; Wang, J.; Lee, H.; Kim, D. H. Synergistic Nanozymetic Activity of Hybrid Gold Bipyramid-Molybdenum Disulfide Core@shell Nanostructures for Two-Photon Imaging and Anticancer Therapy. ACS Appl. Mater. Interfaces 2018, 10 (49), 42068-42076. doi: 10.1021/acsami.8b15443
  5. Wang, S.; Huang, P.; Nie, L.; Xing, R.; Liu, D.; Wang, Z.; Lin, J.; Chen, S.; Niu, G.; Lu, G.; Chen, X. Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars. Adv. Mater. 2013, 25 (22), 3055-3061. doi: 10.1002/adma.201204623
  6. Sykes, E. A.; Chen, J.; Zheng, G.; Chan, W. C. W. Investigating the Impact of Nanoparticle Size on Active and Passive Tumor Targeting Efficiency. ACS Nano 2014, 8 (6), 5696-5706. doi: 10.1021/nn500299p
  7. Lee, J.-S.; Green, J. J.; Love, K. T.; Sunshine, J.; Langer, R.; Anderson, D. G. Gold, Poly(Beta-Amino Ester) Nanoparticles for Small Interfering RNA Delivery. Nano Lett. 2009, 9 (6), 2402-2406. doi: 10.1021/nl9009793
  8. Gulbakan, B.; Yasun, E.; Shukoor, M. I.; Zhu, Z.; You, M.; Tan, X.; Sanchez, H.; Powell, D. H.; Dai, H.; Tan, W. A Dual Platform for Selective Analyte Enrichment and Ionization in Mass Spectrometry Using Aptamer-Conjugated Graphene Oxide. J. Am. Chem. Soc. 2010, 132 (49), 17408-17410. doi: 10.1021/ja109042w
  9. Kim, Y.-H.; Jeon, J.; Hong, S. H.; Rhim, W.-K.; Lee, Y.-S.; Youn, H.; Chung, J.-K.; Lee, M. C.; Lee, D. S.; Kang, K. W.; Nam, J.-M. Tumor Targeting and Imaging Using Cyclic RGD-PEGylated Gold Nanoparticle Probes with Directly Conjugated Iodine-125. Small 2011, 7 (14), 2052-2060. doi: 10.1002/smll.201100927
  10. Xia, X.; Yang, M.; Wang, Y.; Zheng, Y.; Li, Q.; Chen, J.; Xia, Y. Quantifying the Coverage Density of Poly(Ethylene Glycol) Chains on the Surface of Gold Nanostructures. ACS Nano 2012, 6 (1), 512-522. doi: 10.1021/nn2038516

L 92 α-Hydroxy-ω-SQA PEGs

  1. Zhang, N.; Xia, Y.; Zou, Y.; Yang, W.; Zhang, J.; Zhong, Z.; Meng, F. ATN-161 Peptide Functionalized Reversibly Cross-Linked Polymersomes Mediate Targeted Doxorubicin Delivery into Melanoma-Bearing C57BL/6 Mice. Mol. Pharm. 2017, 14 (8), 2538-2547. doi: 10.1021/acs.molpharmaceut.6b00800
  2. Dingels, C.; Wurm, F.; Wagner, M.; Klok, H.-A.; Frey, H. Squaric Acid Mediated Chemoselective PEGylation of Proteins: Reactivity of Single-Step-Activated α-Amino Poly(Ethylene Glycol)s. Chemistry 2012, 18 (52), 16828-16835. doi: 10.1002/chem.201200182
  3. Wurm, F.; Dingels, C.; Frey, H.; Klok, H.-A. Squaric Acid Mediated Synthesis and Biological Activity of a Library of Linear and Hyperbranched Poly(Glycerol)-Protein Conjugates. Biomacromolecules 2012, 13 (4), 1161-1171. doi: 10.1021/bm300103u

L 93 α-Maleinimido-ω-NHS Active Ester PEGs

  1. Xu, R.; Fisher, M.; Juliano, R. L. Targeted Albumin-Based Nanoparticles for Delivery of Amphipathic Drugs. Bioconjug. Chem. 2011, 22 (5), 870-878. doi: 10.1021/bc1002295
  2. Perillo, E.; Hervé-Aubert, K.; Allard-Vannier, E.; Falanga, A.; Galdiero, S.; Chourpa, I. Synthesis and in Vitro Evaluation of Fluorescent and Magnetic Nanoparticles Functionalized with a Cell Penetrating Peptide for Cancer Theranosis. J. Colloid Interface Sci. 2017, 499, 209-217. doi: 10.1016/j.jcis.2017.03.106
  3. Kang, H.; Alam, M. R.; Dixit, V.; Fisher, M.; Juliano, R. L. Cellular Delivery and Biological Activity of Antisense Oligonucleotides Conjugated to a Targeted Protein Carrier. Bioconjug. Chem. 2008, 19 (11), 2182-2188. doi: 10.1021/bc800270w
  4. Wedeking, T.; Löchte, S.; Richter, C. P.; Bhagawati, M.; Piehler, J.; You, C. Single Cell GFP-Trap Reveals Stoichiometry and Dynamics of Cytosolic Protein Complexes. Nano Lett. 2015, 15 (5), 3610-3615. doi: 10.1021/acs.nanolett.5b01153
  5. Lisse, D.; Richter, C. P.; Drees, C.; Birkholz, O.; You, C.; Rampazzo, E.; Piehler, J. Monofunctional Stealth Nanoparticle for Unbiased Single Molecule Tracking inside Living Cells. Nano Lett. 2014, 14 (4), 2189-2195. doi: 10.1021/nl500637a
  6. Strackharn, M.; Pippig, D. A.; Meyer, P.; Stahl, S. W.; Gaub, H. E. Nanoscale Arrangement of Proteins by Single-Molecule Cut-and-Paste. J. Am. Chem. Soc. 2012, 134 (37), 15193-15196. doi: 10.1021/ja305689r

L 94 α-Maleinimido-ω-Biotinyl PEGs

  1. Asano, S.; Patterson, J. T.; Gaj, T.; Barbas, C. F., 3rd. Site-Selective Labeling of a Lysine Residue in Human Serum Albumin. Angew. Chem. Int. Ed Engl. 2014, 53 (44), 11783-11786. doi: 10.1002/anie.201405924
  2. Zhang, T.; Neumann, A.; Lindlau, J.; Wu, Y.; Pramanik, G.; Naydenov, B.; Jelezko, F.; Schüder, F.; Huber, S.; Huber, M.; Stehr, F.; Högele, A.; Weil, T.; Liedl, T. DNA-Based Self-Assembly of Fluorescent Nanodiamonds. J. Am. Chem. Soc. 2015, 137 (31), 9776-9779. doi: 10.1021/jacs.5b04857
  3. Jurchenko, C.; Chang, Y.; Narui, Y.; Zhang, Y.; Salaita, K. S. Integrin-Generated Forces Lead to Streptavidin-Biotin Unbinding in Cellular Adhesions. Biophys. J. 2014, 106 (7), 1436-1446. doi: 10.1016/j.bpj.2014.01.049
  4. Paris, J. L.; Villaverde, G.; Cabañas, M. V.; Manzano, M.; Vallet-Regí, M. From Proof-of-Concept Material to PEGylated and Modularly Targeted Ultrasound-Responsive Mesoporous Silica Nanoparticles. J. Mater. Chem. B Mater. Biol. Med. 2018, 6 (18), 2785-2794. doi: 10.1039/c8tb00444g
  5. Syguda, A.; Kerstan, A.; Ladnorg, T.; Stüben, F.; Wöll, C.; Herrmann, C. Immobilization of Biotinylated HGBP1 in a Defined Orientation on Surfaces Is Crucial for Uniform Interaction with Analyte Proteins and Catalytic Activity. Langmuir 2012, 28 (15), 6411-6418. doi: 10.1021/la3008359
  6. Woodbury, D. J.; Rees, C. A.; Thompson, A.; Meiners, P.; Adams, A. An Assay to Quantitate Reducible Cysteines from Nanograms of GST-Fusion Proteins. Anal. Biochem. 2011, 417 (2), 165-173. doi: 10.1016/j.ab.2011.06.017
  7. SoRelle, J. A.; Kanak, M. A.; Itoh, T.; Horton, J. M.; Naziruddin, B.; Kane, R. R. Comparison of Surface Modification Chemistries in Mouse, Porcine, and Human Islets. J. Biomed. Mater. Res. A 2015, 103 (3), 869-877. doi: 10.1002/jbm.a.35229

L 95 α-Maleinimido-ω-Carboxy PEGs

  1. Chen, G.; Wang, L.; Cordie, T.; Vokoun, C.; Eliceiri, K. W.; Gong, S. Multi-Functional Self-Fluorescent Unimolecular Micelles for Tumor-Targeted Drug Delivery and Bioimaging. Biomaterials 2015, 47, 41-50. doi: 10.1016/j.biomaterials.2015.01.006
  2. Guo, J.; Hong, H.; Chen, G.; Shi, S.; Zheng, Q.; Zhang, Y.; Theuer, C. P.; Barnhart, T. E.; Cai, W.; Gong, S. Image-Guided and Tumor-Targeted Drug Delivery with Radiolabeled Unimolecular Micelles. Biomaterials 2013, 34 (33), 8323-8332. doi: 10.1016/j.biomaterials.2013.07.085
  3. Han, L.; Li, J.; Huang, S.; Huang, R.; Liu, S.; Hu, X.; Yi, P.; Shan, D.; Wang, X.; Lei, H.; Jiang, C. Peptide-Conjugated Polyamidoamine Dendrimer as a Nanoscale Tumor-Targeted T1 Magnetic Resonance Imaging Contrast Agent. Biomaterials 2011, 32 (11), 2989-2998. doi: 10.1016/j.biomaterials.2011.01.005
  4. Guo, J.; Hong, H.; Chen, G.; Shi, S.; Nayak, T. R.; Theuer, C. P.; Barnhart, T. E.; Cai, W.; Gong, S. Theranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging. ACS Appl. Mater. Interfaces 2014, 6 (24), 21769-21779. doi: 10.1021/am5002585
  5. Wu, H.; Li, J.; Zhang, Q.; Yan, X.; Guo, L.; Gao, X.; Qiu, M.; Jiang, X.; Lai, R.; Chen, H. A Novel Small Odorranalectin-Bearing Cubosomes: Preparation, Brain Delivery and Pharmacodynamic Study on Amyloid-Β₂₅₋₃₅-Treated Rats Following Intranasal Administration. Eur. J. Pharm. Biopharm. 2012, 80 (2), 368-378. doi: 10.1016/j.ejpb.2011.10.012
  6. Brinkman, A. M.; Chen, G.; Wang, Y.; Hedman, C. J.; Sherer, N. M.; Havighurst, T. C.; Gong, S.; Xu, W. Aminoflavone-Loaded EGFR-Targeted Unimolecular Micelle Nanoparticles Exhibit Anti-Cancer Effects in Triple Negative Breast Cancer. Biomaterials 2016, 101, 20-31. doi: 10.1016/j.biomaterials.2016.05.041
  7. McCarthy, J. R.; Sazonova, I. Y.; Erdem, S. S.; Hara, T.; Thompson, B. D.; Patel, P.; Botnaru, I.; Lin, C. P.; Reed, G. L.; Weissleder, R.; Jaffer, F. A. Multifunctional Nanoagent for Thrombus-Targeted Fibrinolytic Therapy. Nanomedicine (Lond.) 2012, 7 (7), 1017-1028. doi: 10.2217/nnm.11.179
  8. Huo, H.; Gao, Y.; Wang, Y.; Zhang, J.; Wang, Z.-Y.; Jiang, T.; Wang, S. Polyion Complex Micelles Composed of Pegylated Polyasparthydrazide Derivatives for SiRNA Delivery to the Brain. J. Colloid Interface Sci. 2015, 447, 8-15. doi: 10.1016/j.jcis.2015.01.043
  9. Chandrawati, R.; Chong, S.-F.; Zelikin, A. N.; Hosta-Rigau, L.; Städler, B.; Caruso, F. Degradation of liposomal subcompartments in PEGylated capsosomes. Soft Matter 2011, 7 (20), 9638-9646. doi: 10.1039/c1sm05623a
  10. Seo, J. H.; Chen, L.-J.; Verkhoturov, S. V.; Schweikert, E. A.; Revzin, A. The Use of Glass Substrates with Bi-Functional Silanes for Designing Micropatterned Cell-Secreted Cytokine Immunoassays. Biomaterials 2011, 32 (23), 5478-5488. doi: 10.1016/j.biomaterials.2011.04.026

L 96 α-OPSS-ω-NHS Active Ester PEGs

  1. Wiley, D. T.; Webster, P.; Gale, A.; Davis, M. E. Transcytosis and Brain Uptake of Transferrin-Containing Nanoparticles by Tuning Avidity to Transferrin Receptor. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (21), 8662-8667. doi: 10.1073/pnas.1307152110
  2. Kapadia, C. H.; Tian, S.; Perry, J. L.; Luft, J. C.; DeSimone, J. M. Reduction Sensitive PEG Hydrogels for Codelivery of Antigen and Adjuvant to Induce Potent CTLs. Mol. Pharm. 2016, 13 (10), 3381-3394. doi: 10.1021/acs.molpharmaceut.6b00288
  3. Yang, J.; Li, Q.; Yang, X.; Feng, Y.; Ren, X.; Shi, C.; Zhang, W. Multitargeting Gene Delivery Systems for Enhancing the Transfection of Endothelial Cells. Macromol. Rapid Commun. 2016, 37 (23), 1926-1931. doi: 10.1002/marc.201600345

L 97 α-Iodacetamido-ω-Alkyne PEGs

  1. Natarajan, A.; Du, W.; Xiong, C.-Y.; DeNardo, G. L.; DeNardo, S. J.; Gervay-Hague, J. Construction of Di-ScFv through a Trivalent Alkyne-Azide 1,3-Dipolar Cycloaddition. Chem. Commun. (Camb.) 2007, Nr. 7, 695-697. doi: 10.1039/B611636A

L 98 α-Hydroxy-ω-Tritylthio PEGs

  1. Michelena, O.; Padro, D.; Carrillo-Carrión, C.; del Pino, P.; Blanco, J.; Arnaiz, B.; Parak, W. J.; Carril, M. Novel fluorinated ligands for gold nanoparticle labelling with applications in 19F-MRI. Chem. Commun. (Camb.) 2017, 53 (16), 2447-2450. doi: 10.1039/C6CC08900C
  2. Glaser, M.; Karlsen, H.; Solbakken, M.; Arukwe, J.; Brady, F.; Luthra, S. K.; Cuthbertson, A. 18F-Fluorothiols: A New Approach to Label Peptides Chemoselectively as Potential Tracers for Positron Emission Tomography. Bioconjug. Chem. 2004, 15 (6), 1447-1453. doi: 10.1021/bc0498774
  3. Luo, W.; Gobbo, P.; McNitt, C. D.; Sutton, D. A.; Popik, V. V.; Workentin, M. S. “Shine & Click” Photo-Induced Interfacial Unmasking of Strained Alkynes on Small Water-Soluble Gold Nanoparticles. Chemistry 2017, 23 (5), 1052-1059. doi: 10.1002/chem.201603398
  4. Meuleman, T. J.; Dunlop, J. I.; Owsianka, A. M.; van de Langemheen, H.; Patel, A. H.; Liskamp, R. M. J. Immobilization by Surface Conjugation of Cyclic Peptides for Effective Mimicry of the HCV-Envelope E2 Protein as a Strategy toward Synthetic Vaccines. Bioconjug. Chem. 2018, 29 (4), 1091-1101. doi: 10.1021/acs.bioconjchem.7b00755
  5. Ghiassian, S.; Yu, L.; Gobbo, P.; Nazemi, A.; Romagnoli, T.; Luo, W.; Luyt, L. G.; Workentin, M. S. Nitrone-Modified Gold Nanoparticles: Synthesis, Characterization, and Their Potential as 18F-Labeled Positron Emission Tomography Probes via I-SPANC. ACS Omega 2019, 4 (21), 19106-19115. doi: 10.1021/acsomega.9b02322
  6. Sasmal, R.; Das Saha, N.; Schueder, F.; Joshi, D.; Sheeba, V.; Jungmann, R.; Agasti, S. S. Dynamic Host-Guest Interaction Enables Autonomous Single Molecule Blinking and Super-Resolution Imaging. Chem. Commun. (Camb.) 2019, 55 (96), 14430-14433. doi: 10.1039/c9cc07153a

L 99 α-Biotinyl-ω-Amino PEGs

  1. Niu, J.; Lunn, D. J.; Pusuluri, A.; Yoo, J. I.; O’Malley, M. A.; Mitragotri, S.; Soh, H. T.; Hawker, C. J. Engineering Live Cell Surfaces with Functional Polymers via Cytocompatible Controlled Radical Polymerization. Nat. Chem. 2017, 9 (6), 537-545. doi: 10.1038/nchem.2713
  2. Darko, A.; Wallace, S.; Dmitrenko, O.; Machovina, M. M.; Mehl, R. A.; Chin, J. W.; Fox, J. M. Conformationally Strained Trans-Cyclooctene with Improved Stability and Excellent Reactivity in Tetrazine Ligation. Chem. Sci. 2014, 5 (10), 3770-3776. doi: 10.1039/C4SC01348D
  3. Dalhaimer, P.; Engler, A. J.; Parthasarathy, R.; Discher, D. E. Targeted Worm Micelles. Biomacromolecules 2004, 5 (5), 1714-1719. doi: 10.1021/bm049884v
  4. Doh, J.; Irvine, D. J. Photogenerated Polyelectrolyte Bilayers from an Aqueous-Processible Photoresist for Multicomponent Protein Patterning. J. Am. Chem. Soc. 2004, 126 (30), 9170-9171. doi: 10.1021/ja048261m
  5. Chen, W.-H.; Luo, G.-F.; Lei, Q.; Jia, H.-Z.; Hong, S.; Wang, Q.-R.; Zhuo, R.-X.; Zhang, X.-Z. MMP-2 Responsive Polymeric Micelles for Cancer-Targeted Intracellular Drug Delivery. Chem. Commun. (Camb.) 2015, 51 (3), 465-468. doi: 10.1039/c4cc07563c
  6. Liu, Y.; Feng, L.; Liu, T.; Zhang, L.; Yao, Y.; Yu, D.; Wang, L.; Zhang, N. Multifunctional PH-Sensitive Polymeric Nanoparticles for Theranostics Evaluated Experimentally in Cancer. Nanoscale 2014, 6 (6), 3231-3242. doi: 10.1039/c3nr05647c
  7. Basu, S.; Harfouche, R.; Soni, S.; Chimote, G.; Mashelkar, R. A.; Sengupta, S. Nanoparticle-Mediated Targeting of MAPK Signaling Predisposes Tumor to Chemotherapy. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (19), 7957-7961. doi: 10.1073/pnas.0902857106
  8. Chung, H. J.; Lee, H.; Bae, K. H.; Lee, Y.; Park, J.; Cho, S.-W.; Hwang, J. Y.; Park, H.; Langer, R.; Anderson, D.; Park, T. G. Facile Synthetic Route for Surface-Functionalized Magnetic Nanoparticles: Cell Labeling and Magnetic Resonance Imaging Studies. ACS Nano 2011, 5 (6), 4329-4336. doi: 10.1021/nn201198f
  9. Kim, S. Y.; Cho, S. H.; Lee, Y. M.; Chu, L.-Y. Biotin-Conjugated Block Copolymeric Nanoparticles as Tumor-Targeted Drug Delivery Systems. Macromol. Res. 2007, 15 (7), 646-655. doi: 10.1007/bf03218945
  10. Han, B.; Stevens, J. F.; Maier, C. S. Design, Synthesis, and Application of a Hydrazide-Functionalized Isotope-Coded Affinity Tag for the Quantification of Oxylipid-Protein Conjugates. Anal. Chem. 2007, 79 (9), 3342-3354. doi: 10.1021/ac062262a

L 100 α-Mercapto-ω-Boc-Hydrazido PEGs

  1. Pollok, N. E.; Rabin, C.; Smith, L.; Crooks, R. M. Orientation-Controlled Bioconjugation of Antibodies to Silver Nanoparticles. Bioconjug. Chem. 2019, 30 (12), 3078-3086. doi: 10.1021/acs.bioconjchem.9b00737

L 101 α-Hydroxy-ω-Mercapto PEGs

  1. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-Mediated near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (23), 13549-13554. doi: 10.1073/pnas.2232479100
  2. Qian, X.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. In Vivo Tumor Targeting and Spectroscopic Detection with Surface-Enhanced Raman Nanoparticle Tags. Nat. Biotechnol. 2008, 26 (1), 83-90. doi: 10.1038/nbt1377
  3. O’Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-Thermal Tumor Ablation in Mice Using near Infrared-Absorbing Nanoparticles. Cancer Lett. 2004, 209 (2), 171-176. doi: 10.1016/s0304-3835(04)00144-2
  4. Cheng, Y.; C Samia, A.; Meyers, J. D.; Panagopoulos, I.; Fei, B.; Burda, C. Highly Efficient Drug Delivery with Gold Nanoparticle Vectors for in Vivo Photodynamic Therapy of Cancer. J. Am. Chem. Soc. 2008, 130 (32), 10643-10647. doi: 10.1021/ja801631c
  5. Zhang, G.; Yang, Z.; Lu, W.; Zhang, R.; Huang, Q.; Tian, M.; Li, L.; Liang, D.; Li, C. Influence of Anchoring Ligands and Particle Size on the Colloidal Stability and in Vivo Biodistribution of Polyethylene Glycol-Coated Gold Nanoparticles in Tumor-Xenografted Mice. Biomaterials 2009, 30 (10), 1928-1936. doi: 10.1016/j.biomaterials.2008.12.038
  6. Moon, J. J.; Suh, H.; Bershteyn, A.; Stephan, M. T.; Liu, H.; Huang, B.; Sohail, M.; Luo, S.; Um, S. H.; Khant, H.; Goodwin, J. T.; Ramos, J.; Chiu, W.; Irvine, D. J. Interbilayer-Crosslinked Multilamellar Vesicles as Synthetic Vaccines for Potent Humoral and Cellular Immune Responses. Nat. Mater. 2011, 10 (3), 243-251. doi: 10.1038/nmat2960
  7. Xing, H.; Bu, W.; Zhang, S.; Zheng, X.; Li, M.; Chen, F.; He, Q.; Zhou, L.; Peng, W.; Hua, Y.; Shi, J. Multifunctional Nanoprobes for Upconversion Fluorescence, MR and CT Trimodal Imaging. Biomaterials 2012, 33 (4), 1079-1089. doi: 10.1016/j.biomaterials.2011.10.039
  8. Liu, Y.; Shipton, M. K.; Ryan, J.; Kaufman, E. D.; Franzen, S.; Feldheim, D. L. Synthesis, Stability, and Cellular Internalization of Gold Nanoparticles Containing Mixed Peptide-Poly(Ethylene Glycol) Monolayers. Anal. Chem. 2007, 79 (6), 2221-2229. doi: 10.1021/ac061578f
  9. Ding, X.; Yang, C.; Lim, T. P.; Hsu, L. Y.; Engler, A. C.; Hedrick, J. L.; Yang, Y.-Y. Antibacterial and Antifouling Catheter Coatings Using Surface Grafted PEG-b-Cationic Polycarbonate Diblock Copolymers. Biomaterials 2012, 33 (28), 6593-6603. doi: 10.1016/j.biomaterials.2012.06.001
  10. Gao, J.; Huang, X.; Liu, H.; Zan, F.; Ren, J. Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging. Langmuir 2012, 28 (9), 4464-4471. doi: 10.1021/la204289k
  11. Kumar, S.; Harrison, N.; Richards-Kortum, R.; Sokolov, K. Plasmonic Nanosensors for Imaging Intracellular Biomarkers in Live Cells. Nano Lett. 2007, 7 (5), 1338-1343. doi: 10.1021/nl070365i

L 102 α-Hydroxy-ω-Amido Succinic Acid PEGs

  1. Hourani, R.; Zhang, C.; van der Weegen, R.; Ruiz, L.; Li, C.; Keten, S.; Helms, B. A.; Xu, T. Processable Cyclic Peptide Nanotubes with Tunable Interiors. J. Am. Chem. Soc. 2011, 133 (39), 15296-15299. doi: 10.1021/ja2063082
  2. Wei, Q.; Li, T.; Wang, G.; Li, H.; Qian, Z.; Yang, M. Fe(3)O(4) Nanoparticles-Loaded PEG-PLA Polymeric Vesicles as Labels for Ultrasensitive Immunosensors. Biomaterials 2010, 31 (28), 7332-7339. doi: 10.1016/j.biomaterials.2010.06.014
  3. Li, X.; Bian, H.; Yu, S.; Xiao, W.; Shen, J.; Lan, C.; Zhou, K.; Huang, C.; Wang, L.; Du, D.; Lin, Y.; Tang, Y. A Rapid Method for Antigen-Specific Hybridoma Clone Isolation. Anal. Chem. 2018, 90 (3), 2224-2229. doi: 10.1021/acs.analchem.7b04595
  4. Oishi, M.; Ikeo, S.; Nagasaki, Y. Lipase-catalyzed selective synthesis and micellization of poly(ethylene glycol)-block-poly(ε-caprolactone) copolymer possessing a carboxylic acid group at the PEG chain end. Polym. J. 2007, 39 (3), 239-244. doi: 10.1295/polymj.PJ2006172

L 103 α-Hydroxy-ω-Hydrazido PEGs

  1. Gavrilyuk, J.; Ban, H.; Nagano, M.; Hakamata, W.; Barbas, C. F., 3rd. Formylbenzene Diazonium Hexafluorophosphate Reagent for Tyrosine-Selective Modification of Proteins and the Introduction of a Bioorthogonal Aldehyde. Bioconjug. Chem. 2012, 23 (12), 2321-2328. doi: 10.1021/bc300410p
  2. Wan, Q.; Zeng, G.; He, Z.; Mao, L.; Liu, M.; Huang, H.; Deng, F.; Zhang, X.; Wei, Y. Fabrication and Biomedical Applications of AIE Active Nanotheranostics through the Combination of a Ring-Opening Reaction and Formation of Dynamic Hydrazones. J. Mater. Chem. B Mater. Biol. Med. 2016, 4 (34), 5692-5699. doi: 10.1039/c6tb01452f
  3. Stephen, Z. R.; Gebhart, R. N.; Jeon, M.; Blair, A. A.; Ellenbogen, R. G.; Silber, J. R.; Zhang, M. PH-Sensitive O6-Benzylguanosine Polymer Modified Magnetic Nanoparticles for Treatment of Glioblastomas. Bioconjug. Chem. 2017, 28 (1), 194-202. doi: 10.1021/acs.bioconjchem.6b00545

L 104 α-Hydroxy-ω-Boc-Amino PEGs

  1. Westenhoff, S.; Kotov, N. A. Quantum Dot on a Rope. J. Am. Chem. Soc. 2002, 124 (11), 2448-2449. doi: 10.1021/ja0173728
  2. Tsai, H.-C.; Chang, W.-H.; Lo, C.-L.; Tsai, C.-H.; Chang, C.-H.; Ou, T.-W.; Yen, T.-C.; Hsiue, G.-H. Graft and Diblock Copolymer Multifunctional Micelles for Cancer Chemotherapy and Imaging. Biomaterials 2010, 31 (8), 2293-2301. doi: 10.1016/j.biomaterials.2009.11.059
  3. Ma, P.; Liu, S.; Huang, Y.; Chen, X.; Zhang, L.; Jing, X. Lactose Mediated Liver-Targeting Effect Observed by Ex Vivo Imaging Technology. Biomaterials 2010, 31 (9), 2646-2654. doi: 10.1016/j.biomaterials.2009.12.019
  4. Chen, Y.-C.; Liao, L.-C.; Lu, P.-L.; Lo, C.-L.; Tsai, H.-C.; Huang, C.-Y.; Wei, K.-C.; Yen, T.-C.; Hsiue, G.-H. The Accumulation of Dual PH and Temperature Responsive Micelles in Tumors. Biomaterials 2012, 33 (18), 4576-4588. doi: 10.1016/j.biomaterials.2012.02.059
  5. Lu, P.-L.; Chen, Y.-C.; Ou, T.-W.; Chen, H.-H.; Tsai, H.-C.; Wen, C.-J.; Lo, C.-L.; Wey, S.-P.; Lin, K.-J.; Yen, T.-C.; Hsiue, G.-H. Multifunctional Hollow Nanoparticles Based on Graft-Diblock Copolymers for Doxorubicin Delivery. Biomaterials 2011, 32 (8), 2213-2221. doi: 10.1016/j.biomaterials.2010.11.051
  6. Jia, Z.; Liu, J.; Boyer, C.; Davis, T. P.; Bulmus, V. Functional Disulfide-Stabilized Polymer-Protein Particles. Biomacromolecules 2009, 10 (12), 3253-3258. doi: 10.1021/bm900817a
  7. Liu, X.; Formanek, P.; Voit, B.; Appelhans, D. Functional Cellular Mimics for the Spatiotemporal Control of Multiple Enzymatic Cascade Reactions. Angew. Chem. Int. Ed Engl. 2017, 56 (51), 16233-16238. doi: 10.1002/anie.201708826
  8. Colombo, M.; Mazzucchelli, S.; Montenegro, J. M.; Galbiati, E.; Corsi, F.; Parak, W. J.; Prosperi, D. Protein Oriented Ligation on Nanoparticles Exploiting O6-Alkylguanine-DNA Transferase (SNAP) Genetically Encoded Fusion. Small 2012, 8 (10), 1492-1497. doi: 10.1002/smll.201102284
  9. Gao, H.; Cheng, T.; Liu, J.; Liu, J.; Yang, C.; Chu, L.; Zhang, Y.; Ma, R.; Shi, L. Self-Regulated Multifunctional Collaboration of Targeted Nanocarriers for Enhanced Tumor Therapy. Biomacromolecules 2014, 15 (10), 3634-3642. doi: 10.1021/bm5009348

L 105 α-Hydroxy-ω-Amino PEGs

  1. Sun, Z.; Xie, H.; Tang, S.; Yu, X.-F.; Guo, Z.; Shao, J.; Zhang, H.; Huang, H.; Wang, H.; Chu, P. K. Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angew. Chem. Int. Ed Engl. 2015, 54 (39), 11526-11530. doi: 10.1002/anie.201506154
  2. Choi, C. H. J.; Alabi, C. A.; Webster, P.; Davis, M. E. Mechanism of Active Targeting in Solid Tumors with Transferrin-Containing Gold Nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (3), 1235-1240. doi: 10.1073/pnas.0914140107
  3. Prabaharan, M.; Grailer, J. J.; Pilla, S.; Steeber, D. A.; Gong, S. Amphiphilic Multi-Arm-Block Copolymer Conjugated with Doxorubicin via PH-Sensitive Hydrazone Bond for Tumor-Targeted Drug Delivery. Biomaterials 2009, 30 (29), 5757-5766. doi: 10.1016/j.biomaterials.2009.07.020
  4. Ryman-Rasmussen, J. P.; Riviere, J. E.; Monteiro-Riviere, N. A. Penetration of Intact Skin by Quantum Dots with Diverse Physicochemical Properties. Toxicol. Sci. 2006, 91 (1), 159-165. doi: 10.1093/toxsci/kfj122
  5. Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Lim, Y.-H.; Finn, M. G.; Koberstein, J. T.; Turro, N. J.; Tirrell, D. A.; Grubbs, R. H. Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-through and Clicking-To. J. Am. Chem. Soc. 2011, 133 (3), 559-566. doi: 10.1021/ja108441d
  6. Xiao, Z.; Ji, C.; Shi, J.; Pridgen, E. M.; Frieder, J.; Wu, J.; Farokhzad, O. C. DNA Self-Assembly of Targeted near-Infrared-Responsive Gold Nanoparticles for Cancer Thermo-Chemotherapy. Angew. Chem. Int. Ed Engl. 2012, 51 (47), 11853-11857. doi: 10.1002/anie.201204018
  7. Sun, X.; Rossin, R.; Turner, J. L.; Becker, M. L.; Joralemon, M. J.; Welch, M. J.; Wooley, K. L. An Assessment of the Effects of Shell Cross-Linked Nanoparticle Size, Core Composition, and Surface PEGylation on in Vivo Biodistribution. Biomacromolecules 2005, 6 (5), 2541-2554. doi: 10.1021/bm050260e
  8. Liu, Y.; Ai, K.; Ji, X.; Askhatova, D.; Du, R.; Lu, L.; Shi, J. Comprehensive Insights into the Multi-Antioxidative Mechanisms of Melanin Nanoparticles and Their Application to Protect Brain from Injury in Ischemic Stroke. J. Am. Chem. Soc. 2017, 139 (2), 856-862. doi: 10.1021/jacs.6b11013
  9. Allen, P. M.; Liu, W.; Chauhan, V. P.; Lee, J.; Ting, A. Y.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the near-Infrared. J. Am. Chem. Soc. 2010, 132 (2), 470-471. doi: 10.1021/ja908250r

L 106 α-Amino-ω-Alkyne PEGs

  1. Foy, J. T.; Li, Q.; Goujon, A.; Colard-Itté, J.-R.; Fuks, G.; Moulin, E.; Schiffmann, O.; Dattler, D.; Funeriu, D. P.; Giuseppone, N. Dual-Light Control of Nanomachines That Integrate Motor and Modulator Subunits. Nat. Nanotechnol. 2017, 12 (6), 540-545. doi: 10.1038/nnano.2017.28
  2. Collot, M.; Loukou, C.; Yakovlev, A. V.; Wilms, C. D.; Li, D.; Evrard, A.; Zamaleeva, A.; Bourdieu, L.; Léger, J.-F.; Ropert, N.; Eilers, J.; Oheim, M.; Feltz, A.; Mallet, J.-M. Calcium Rubies: A Family of Red-Emitting Functionalizable Indicators Suitable for Two-Photon Ca2+ Imaging. J. Am. Chem. Soc. 2012, 134 (36), 14923-14931. doi: 10.1021/ja304018d
  3. Scialabba, C.; Sciortino, A.; Messina, F.; Buscarino, G.; Cannas, M.; Roscigno, G.; Condorelli, G.; Cavallaro, G.; Giammona, G.; Mauro, N. Highly Homogeneous Biotinylated Carbon Nanodots: Red-Emitting Nanoheaters as Theranostic Agents toward Precision Cancer Medicine. ACS Appl. Mater. Interfaces 2019, 11 (22), 19854-19866. doi: 10.1021/acsami.9b04925
  4. Longo, J.; Yao, C.; Rios, C.; Chau, N. T. T.; Boulmedais, F.; Hemmerlé, J.; Lavalle, P.; Schiller, S. M.; Schaaf, P.; Jierry, L. Reversible Biomechano-Responsive Surface Based on Green Fluorescent Protein Genetically Modified with Unnatural Amino Acids. Chem. Commun. (Camb.) 2015, 51 (1), 232-235. doi: 10.1039/c4cc07486f
  5. Fan, J.; He, Q.; Wang, Z.; Huang, W.; Cai, Z. Self-Assembled Nanocomplex for Co-Delivery of Arsenic-Retinoic Acid Prodrug into Acute Promyelocytic Leukemia Cells. J. Biomed. Nanotechnol. 2018, 14 (6), 1052-1065. doi: 10.1166/jbn.2018.2556

L 107 Hydrazine Resins

  1. Bird, M. J.; Dawson, P. E. A shelf stable Fmoc hydrazine resin for the synthesis of peptide hydrazides. Peptide science (Hoboken, N.J.). 2022, 114 (5). doi: 10.1002/pep2.24268

L 108 Resins with Isotope Labeled Amino Acids

  1. Nauwelaerts, S. J. D.; Roosens, N. H. C.; Bernard, A.; De Keersmaecker, S. C. J.; De Cremer, K. Development of a multiplex mass spectrometry method for simultaneous quantification of urinary proteins related to respiratory health. Scientific Reports, 2021,11(1). doi:10.1038/s41598-021-89068-9
  2. Wiśniewski, J. R.; Wegler, C.; Artursson, P. Multiple-Enzyme-Digestion Strategy Improves Accuracy and Sensitivity of Label- and Standard-Free Absolute Quantification to a Level That Is Achievable by Analysis with Stable Isotope-Labeled Standard Spiking. J. Proteome Res. 2019, 18, 217−224. doi: 10.1021/acs.jproteome.8b00549