ɑ-Methoxy-ω-Mercapto PEG

ɑ-Methoxy-ω-Thiol PEG

Product information

PEG-Thiol derivatives are useful for surface modification or reversible pegylation via a reducable S-S bond. Thiols exhibit a high affinity towards metal ions and metal surfaces like silver, gold etc. Mercapto PEGs are widely used for pegylation of metal surfaces, films or nanoparticles. The free thiol group acts as a soft nucleophile and reacts readily with maleimide functions to form stable thioether bonds. On the other hand it reacts with other free thiols to form cleavable S-S disulfide bonds.


Literature

L 68 α-Methoxy-ω-Mercapto PEGs

  1. Soliman, M. G.; Pelaz, B.; Parak, W. J.; del Pino, P. Phase Transfer and Polymer Coating Methods toward Improving the Stability of Metallic Nanoparticles for Biological Applications. Chem. Mater. 2015, 27 (3), 990-997. doi: 10.1021/cm5043167.
  2. Ma, L.; Wang, C.; Zhang, M. Detecting Protein Adsorption and Binding Using Magnetic Nanoparticle Probes. Sens. Actuators B Chem. 2011, 160 (1), 650-655. doi: 10.1016/j.snb.2011.08.043.
  3. Yeager, D.; Karpiouk, A.; Wang, B.; Amirian, J.; Sokolov, K.; Smalling, R.; Emelianov, S. Intravascular Photoacoustic Imaging of Exogenously Labeled Atherosclerotic Plaque through Luminal Blood. J. Biomed. Opt. 2012, 17 (10), 106016. doi: 10.1117/1.JBO.17.10.106016.
  4. Joshi, P. P.; Yoon, S. J.; Hardin, W. G.; Emelianov, S.; Sokolov, K. V. Conjugation of Antibodies to Gold Nanorods through Fc Portion: Synthesis and Molecular Specific Imaging. Bioconjug. Chem. 2013, 24 (6), 878-888. doi: 10.1021/bc3004815.
  5. Bibikova, O.; Popov, A.; Skovorodkin, I.; Prilepskyi, A.; Pylaev, T.; Bykov, A.; Staroverov, S.; Bogatyrev, V.; Tuchin, V.; Kinnunen, M.; Vainio, S.; Kordas, K.; Khlebtsov, N. Plasmon-Resonant Gold Nanoparticles with Variable Morphology as Optical Labels and Drug Carriers for Cytological Research. In Novel Biophotonic Techniques and Applications II; Vitkin, A., Amelink, A., Eds.; SPIE, 2013.
  6. Mallidi, S.; Larson, T.; Tam, J.; Joshi, P. P.; Karpiouk, A.; Sokolov, K.; Emelianov, S. Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer. Nano Lett. 2009, 9 (8), 2825-2831. doi: 10.1021/nl802929u.
  7. Hoshikawa, A.; Tagami, T.; Morimura, C.; Fukushige, K.; Ozeki, T. Ranibizumab Biosimilar/Polyethyleneglycol-Conjugated Gold Nanoparticles as a Novel Drug Delivery Platform for Age-Related Macular Degeneration. J. Drug Deliv. Sci. Technol. 2017, 38, 45-50. doi: 10.1016/j.jddst.2017.01.004.
  8. Daniels, J. L.; Crawford, T. M.; Andreev, O. A.; Reshetnyak, Y. K. Synthesis and Characterization of PHLIP® Coated Gold Nanoparticles. Biochem. Biophys. Rep. 2017, 10, 62-69. doi: 10.1016/j.bbrep.2017.02.008
  9. Lee, J.; Grein-Iankovski, A.; Narayanan, S.; Leheny, R. L. Nanorod Mobility within Entangled Wormlike Micelle Solutions. Macromolecules 2017, 50 (1), 406-415. doi: 10.1021/acs.macromol.6b02091.
  10. Jung, B.-K.; Lee, Y. K.; Hong, J.; Ghandehari, H.; Yun, C.-O. Mild Hyperthermia Induced by Gold Nanorod-Mediated Plasmonic Photothermal Therapy Enhances Transduction and Replication of Oncolytic Adenoviral Gene Delivery. ACS Nano 2016, 10 (11), 10533-10543. doi: 10.1021/acsnano.6b06530.