α,ω-Bis-Maleimido PEG

α,ω-Bis-Maleimide PEG

Product information

The maleimide functional group at each end of the PEG linker molecule allows selective and covalent attachment to other molecules with complementary functional groups, such as thiol groups on proteins or peptides. This can be achieved through thiol-maleimide coupling reactions, which result in the formation of a stable and covalent bond between the two molecules. PEG linker molecules with maleimide endgroups are particularly useful for the PEGylation of proteins and peptides, as the maleimide group reacts selectively with the thiol group on cysteine residues, which are abundant in many proteins and peptides. The resulting PEGylated product has improved solubility, stability, and biocompatibility compared to the original molecule.


Literature

L 84 α,ω-Bis-Maleinimido PEGs

  1. Nimmo, C. M.; Owen, S. C.; Shoichet, M. S. Diels-Alder Click Cross-Linked Hyaluronic Acid Hydrogels for Tissue Engineering. Biomacromolecules 2011, 12 (3), 824-830. doi: 10.1021/bm101446k
  2. Shao, C.; Wang, M.; Chang, H.; Xu, F.; Yang, J. A Self-Healing Cellulose Nanocrystal-Poly(Ethylene Glycol) Nanocomposite Hydrogel via Diels-Alder Click Reaction. ACS Sustain. Chem. Eng. 2017, 5 (7), 6167-6174. doi: 10.1021/acssuschemeng.7b01060
  3. Jing, P.; Rudra, J. S.; Herr, A. B.; Collier, J. H. Self-Assembling Peptide-Polymer Hydrogels Designed from the Coiled Coil Region of Fibrin. Biomacromolecules 2008, 9 (9), 2438-2446. doi: 10.1021/bm800459v
  4. Owen, S. C.; Fisher, S. A.; Tam, R. Y.; Nimmo, C. M.; Shoichet, M. S. Hyaluronic Acid Click Hydrogels Emulate the Extracellular Matrix. Langmuir 2013, 29 (24), 7393-7400. doi: 10.1021/la305000w
  5. Lee, B.-S.; Fujita, M.; Khazenzon, N. M.; Wawrowsky, K. A.; Wachsmann-Hogiu, S.; Farkas, D. L.; Black, K. L.; Ljubimova, J. Y.; Holler, E. Polycefin, a New Prototype of a Multifunctional Nanoconjugate Based on Poly(Beta-L-Malic Acid) for Drug Delivery. Bioconjug. Chem. 2006, 17 (2), 317-326. doi: 10.1021/bc0502457
  6. Pakulska, M. M.; Vulic, K.; Tam, R. Y.; Shoichet, M. S. Hybrid Crosslinked Methylcellulose Hydrogel: A Predictable and Tunable Platform for Local Drug Delivery. Adv. Mater. 2015, 27 (34), 5002-5008. doi: 10.1002/adma.201502767
  7. Smith, L. J.; Taimoory, S. M.; Tam, R. Y.; Baker, A. E. G.; Binth Mohammad, N.; Trant, J. F.; Shoichet, M. S. Diels-Alder Click-Cross-Linked Hydrogels with Increased Reactivity Enable 3D Cell Encapsulation. Biomacromolecules 2018, 19 (3), 926-935. doi: 10.1021/acs.biomac.7b01715
  8. Gaspar, V. M.; Costa, E. C.; Queiroz, J. A.; Pichon, C.; Sousa, F.; Correia, I. J. Folate-Targeted Multifunctional Amino Acid-Chitosan Nanoparticles for Improved Cancer Therapy. Pharm. Res. 2015, 32 (2), 562-577. doi: 10.1007/s11095-014-1486-0
  9. Fu, Y.; Kao, W. J. In Situ Forming Poly(Ethylene Glycol)-Based Hydrogels via Thiol-Maleimide Michael-Type Addition. J. Biomed. Mater. Res. A 2011, 98 (2), 201-211. doi: 10.1002/jbm.a.33106